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Abstract 14 

The future change in dry and humid heatwaves is assessed in 10 year pan-African convective 15 

scale (4.5km) and parameterised convection (25km) climate model simulations. Compared to 16 

reanalysis, the convective scale simulation is better able to represent humid heatwaves than 17 

the parameterised simulation. Model performance for dry heatwaves is much more similar. 18 

Both model configurations simulate large increases in the intensity, duration and frequency 19 

of heatwaves by 2100 under RCP8.5. Present day conditions that occur on 3 to 6 heatwave 20 

days per year will be normal by 2100, occurring on 150-180 days per year. The future change 21 

in dry heatwaves is similar in both climate model configurations, whereas the future change 22 

in humid heatwaves is 56% higher in intensity and 20% higher in frequency in the convective 23 

scale model. Dry heatwaves are associated with low rainfall, reduced cloud, increased surface 24 

shortwave heating and increased sensible heat flux. In contrast, humid heatwaves are 25 

predominately controlled by increased humidity, rainfall, cloud, longwave heating and 26 

evaporation, with dry bulb temperature gaining more significance in the most humid regions. 27 

Approximately one third (32%) of humid heatwaves commence on wet days. Moist processes 28 

are known to be better represented in convective scale models. Climate models with 29 

parameterised convection, such as those in CMIP, may underestimate the future change in 30 

humid heatwaves, which heightens the need for mitigation and adaptation strategies and 31 

indicates there may be less time available to implement them to avoid future catastrophic 32 

heat stress conditions than previously thought.   33 
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Significance statement 34 

Temperatures are higher in dry heatwaves, but humid heatwaves can be more dangerous, as 35 

the ability to cool by sweating is limited. We found that dry heatwaves are caused by 36 

decreased cloud, allowing the sun to heat the surface, whereas humid heatwaves are caused 37 

by increased cloud, rainfall and evaporation from the surface. We found that a state-of-the-38 

art very high resolution climate model predicts a larger future change in humid heatwaves 39 

compared to a more traditional global climate model. Previous estimates of the prevalence 40 

of humid heatwaves in the future may therefore be underestimated. If we do not cut 41 

emissions of greenhouse gases, present-day heatwave conditions could be experienced on up 42 

to half of all days of the year by 2100.  43 
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1 Introduction 44 

There is mounting evidence that heatwaves, regardless of definition, have increased in 45 

intensity, frequency and duration over Africa over the last three decades (Ceccherini et al. 46 

2017; Fontaine et al. 2013; Lyon 2009; Moron et al. 2016; Seneviratne et al. 2021). The IPCC 47 

Working Group 1 Sixth Assessment Report (Seneviratne et al. 2021) states that at the 48 

continental scale, it is “very likely” the intensity and frequency of African hot extremes will 49 

increase even under 1.5°C global warming, and the changes are “virtually certain” to occur 50 

under 4°C global warming (Dosio 2017; Fitzpatrick et al. 2020a; Perkins-Kirkpatrick; Lewis 51 

2020; Russo et al. 2016). Vicedo-Cabrera et al. (2021) attribute more than 40% of heat-related 52 

mortality in South Africa during the period 1991-2018 to human-induced climate change. 53 

Humid heatwaves are a combined measure of both temperature and humidity. Humidity 54 

limits the body’s ability to sweat and therefore plays a major role in heat stress (i.e. when the 55 

body’s ability to control its internal temperature starts to fail, Kjellstrom et al. (2016)). 56 

Equatorial Africa, in particular, is projected to be a global hotspot for heat stress by the end 57 

of the century (Coffel et al. 2017; Dosio et al. 2018; Mora et al. 2017). The impacts of heat 58 

stress in Africa – including deaths - go largely unreported (Harrington; Otto 2020) and the 59 

sparse observation network means humid temperature extremes in particular are hard to 60 

detect. Despite this, a small number of studies have shown that heatwaves cause harm in 61 

Africa (Azongo et al. 2012; Diboulo et al. 2012).  62 

There is limited literature on the drivers of humid heatwaves anywhere in the world 63 

(Raymond et al. 2021) and the vast majority of research on African heatwave drivers is 64 

focused on dry-bulb heatwaves in the Sahel region of sub-Saharan Africa. Dry-bulb 65 

temperature extremes in the Sahel due to moisture advection and surface longwave heating 66 

through the water vapour greenhouse gas effect have been highlighted in a number of studies 67 

(Fontaine et al. 2013; Guigma et al. 2020; Guigma et al. 2021; Largeron et al. 2020; Oueslati 68 

et al. 2017). Bouniol et al. (2021) analysed daily maximum dry-bulb temperature (daytime) 69 

and daily minimum dry-bulb temperature (nighttime) heatwaves over the Sahel using satellite 70 

derived cloud, aerosol, water vapour and radiative fluxes. They found that daytime heatwaves 71 

occur during reduced cloud, a lower aerosol load and increase surface shortwave radiation 72 

flux. Conversely, nighttime heatwaves occur during periods with increased cloud, aerosol, 73 
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water vapour and a resulting increase in longwave heating than exceeds the decrease in 74 

shortwave heating. 75 

Even within the discipline of meteorology, there is no universally accepted metric for dry or 76 

humid heatwaves and different metrics do not necessarily identify the same events (Guigma 77 

et al. 2020). A number of recent global studies have focused on metrics that account for both 78 

temperature and humidity because both are physiologically important for human heat stress 79 

(Coffel et al. 2017; Mora et al. 2017; Russo et al. 2017). Globally, 74% of the world’s 80 

population is projected to be exposed to deadly heat stress for at least 20 days per year by 81 

2100 under RCP8.5 (Mora et al. 2017). South Asian wet-bulb temperature is projected to 82 

approach, and in a few locations exceed, the critical threshold of 35°C, which is considered 83 

the limit of human survivability, by 2100 under high emission scenarios (Im et al. 2017; Pal; 84 

Eltahir 2016).  85 

Projections of future heat extremes are almost ubiquitously provided by relatively coarse 86 

resolution regional (Gutowski Jr et al. 2016) or global climate (Eyring et al. 2016; Taylor et al. 87 

2012) models, which require a parameterisation scheme to represent convective rainfall 88 

processes. Such models are known to poorly represent tropical rainfall characteristics, 89 

whereas convective-scale climate models are better able to represent intense rainfall and dry 90 

spells (Berthou et al. 2019b; Finney et al. 2020; Prein et al. 2015), related processes such as 91 

storm lifecycles and propagation (Crook et al. 2019; Finney et al. 2020), the atmospheric 92 

overturning circulation (Hart et al. 2018; Jackson et al. 2020), the atmospheric water cycle 93 

(Birch et al. 2014b; Finney et al. 2019) and soil moisture-precipitation feedbacks (Taylor et al. 94 

2013). Additionally, they project larger future increases in rainfall extremes (Berthou et al. 95 

2019a; Finney et al. 2020; Kendon et al. 2014; Kendon et al. 2019). Emerging studies suggest 96 

that heat extremes over Europe are better represented and the increases under climate 97 

change are larger in magnitude in convective-scale climate models (Kennedy-Asser et al. 98 

2020; Tölle et al. 2018). It is not currently known if African heat extremes are better 99 

represented in convective-scale models, although given the crucial role of convection in 100 

African weather, the representation of convection is likely to be important.  It is, therefore, 101 

critical to understand how African heatwave projections from global models are affected by 102 

their parameterisation of convection. 103 
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This study uses 10-year pan-African climate simulations with 4.5km (convective-scale) and 104 

25km (convection-parameterised) horizontal grid-spacing (Senior et al. 2021; Stratton et al. 105 

2018). We evaluate the present day mean temperature and humidity in the climate models 106 

using observations and reanalysis (Section 3.1). We assess the present-day values and future 107 

changes (2100, RCP 8.5) in the intensity, duration and frequency of wet and dry bulb 108 

heatwaves in the climate model simulations (Section 3.2). We demonstrate the contrasting 109 

drivers of wet and dry bulb heatwaves over Africa (Section 3.3) and show how the drivers of 110 

humid heatwaves differ over different regions of Africa (Section 3.4). We explain why the 111 

convective-scale climate model simulates a larger number of more intense and longer 112 

duration heatwaves under climate change than the climate model with parameterised 113 

convection (Section 3.4).   114 

2 Data and Methods 115 

2.1. Model simulations 116 

This study utilises two 10-year regional atmosphere-only climate simulations using the Met 117 

Office Unified Model (MetUM) run over a pan-Africa domain of 25°W-57°E, 45°S-40°N 118 

(Stratton et al. 2018).  Both simulations are driven by the N512 (approximately 25km x 40km 119 

in the tropics) global atmosphere-only (GA7) configuration of the MetUM (Walters et al. 120 

2017). The first regional model (CP4) has a horizontal grid-spacing at the equator of 4.5 × 4.5 121 

km (0.04° x 0.04°) and is ‘convective-scale’, i.e. its horizontal resolution is sufficient to not 122 

require a parameterisation for convection and it is switched off. The second regional model 123 

(P25) has a horizontal grid-spacing matching the global model and includes parameterised 124 

convection (Gregory; Rowntree 1990; Walters et al. 2017). P25 is also based on the GA7 125 

configuration, but in an attempt to restrict differences between P25 and CP4 to convection 126 

some settings such as soil types and aerosol forcing have been made the same as those in 127 

CP4.  128 

In the historical period, representing the years 1997-2006, all models use Reynolds daily Sea 129 

Surface Temperature (SST) observations (Reynolds et al. 2007; Stratton et al. 2018). The 130 

future climate simulations use the Representative Concentration Pathway (RCP) 8.5 for 131 

greenhouse gas concentrations for the year 2100 (Moss et al. 2010). In all the future 132 

simulations (CP4FUT, P25FUT and the driving GCM) the average SST change between 1975–133 
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2005 and 2085–2115 in a separate CMIP5 HadGEM2-ES RCP8.5 run is added to the historical 134 

SSTs (Kendon et al. 2019). 135 

The CP4 data was interpolated onto the P25 grid and all subsequent analysis is performed on 136 

the P25 grid. Regridding the P25 and CP4 data onto a much coarser grid of 2° x 2° made 137 

negligible difference to the results (not shown). The full 10 years of simulation data, from 138 

January 1997 to December 2006, was used. Dropping the first year to allow for spin-up made 139 

negligible difference to all results (not shown).  140 

2.2. Observations and reanalysis 141 

We diagnose Tmax heatwaves using near-surface daily maximum temperature (Tmax) from the 142 

Berkeley Earth Surface Temperature gridded dataset (BEST). It uses the statistical Kriging 143 

method to interpolate data from weather stations compiled from a number of data archives 144 

onto a global regular 1° × 1° grid (Rohde; Hausfather 2020). We evaluate the mean 145 

temperature in the climate models using monthly mean near-surface temperature from the 146 

Climatic Research Unit (CRU) TS4.03 reference dataset, on a 0.5° x 0.5°grid (Harris et al. 2020).  147 

We diagnose heatwaves using hourly data from the fifth generation of the European 148 

reanalysis (ERA5) at the native horizontal resolution of 0.25 x 0.25° (~30km) (Hersbach et al. 149 

2020). We note that ERA5 is produced by an atmospheric model, itself with parameterised 150 

convection. It cannot be considered as ‘observations’ and the drivers of the heatwaves in 151 

ERA5 may suffer from similar biases as the climate models, particularly P25. Previous work 152 

has compared and evaluated daily maximum and minimum dry bulb temperature in four 153 

reanalysis products, including ERA-Interim, the ERA5 predecessor, against the BEST dataset 154 

and found ERA-Interim performed the best (Barbier et al. 2018). There are limitations in using 155 

reanalysis datasets but there are also likely big uncertainties in the BEST and CRU datasets 156 

due to the sparsity of surface station observations over Africa.  157 

There is no pan-African gridded observational dataset that resolves both the diurnal cycles in 158 

near-surface temperature and humidity. Instead, to evaluate the diurnal cycles of dry and wet 159 

bulb temperature and humidity in reanalysis and the climate model simulations, we use 160 

hourly observations from three weather stations, with multiyear sub-hourly records that 161 

include humidity. The first is in Skukuza, South Africa (-25.0°N, 31.5°E), which has data 162 

available 2000-2013 (Pastorello et al. 2020), the second is in Demokeya, Kordofan, central 163 
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Sudan (13.3°N, 30.5°E), which has data available 2002-2012 (Ardö 2013) and the third is in 164 

Banizoumbou, Niamey, Niger (13.5°N, 2.7°E), where data from 2008-2015 was used (Lebel et 165 

al. 2009). 166 

We use the daily Integrated Multi-satellitE Retrievals (IMERG) for Global Precipitation 167 

Measurement (GPM) satellite retrievals of rainfall (Huffman 2014), available from mid-2000 168 

to near-present. The IMERG data is interpolated onto the ERA5 grid before any analysis is 169 

performed. 170 

2.3. Heatwave identification 171 

Heatwaves are defined using near-surface daily maximum dry (Tmax) or wet (Twbmax) bulb 172 

temperature over the pan-Africa region of 22°W-54°E, 42°S-37°N, which includes the Arabian 173 

Peninsula, for land points only. This means a 3° band around the edge of the model domains 174 

have been removed to allow for the effects of the lateral boundary conditions. There are 175 

various quantities that can be used to represent humidity in heat stress, including wet-bulb 176 

temperature, wet bulb globe temperature and apparent temperature. Sherwood (2018) 177 

shows that although all three of these quantities increase with increasing humidity, wet bulb 178 

temperature is the most sensitive to humidity, which makes it a good choice here in order to 179 

best highlight the differences in the drivers of Tmax and Twbmax heatwaves.  180 

Hourly wet-bulb temperature is computed from hourly specific humidity, dry bulb 181 

temperature and pressure using the method of Davies-Jones (2008) and then the daily 182 

maximum, Twbmax, is found. The results are not sensitive to using hourly dry-bulb temperature 183 

to compute Tmax, rather than the daily dry-bulb maximum temperature output directly from 184 

the model simulations. For Twbmax, it was necessary to compute the daily maximums from the 185 

hourly data because, due to the diurnal cycle of humidity, it is essential to use hourly, rather 186 

than daily mean, humidity data to compute Twbmax (see Section 2.4). For consistency, we also 187 

use hourly data to calculate Tmax.     188 

Heatwaves were identified as follows (described here for Twbmax heatwaves; a description of 189 

the differences between how Twbmax and Tmax heatwaves are diagnosed follows):  190 

1. For each gridbox, the 90th percentile of Twbmax over a 31-day running window, 191 

Twbmax_31d90p (blue line, Figure 1) and the 97th percentile of daily maximum wet bulb 192 
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temperature over all days in the dataset, Twbmax_97p (red solid line, Figure 1) are 193 

computed.  194 

2. Hot days are defined as days where Twbmax (black dots, Figure 1) are above both the 195 

blue and red solid lines, i.e. unseasonably warm days in the colder months are not 196 

diagnosed as hot days.  197 

3. A heatwave event is defined as 3 or more consecutive hot days. A “heatwave day” is 198 

defined as each individual day within a heatwave event. 199 

Three key metrics are recorded for each gridbox: the duration of each heatwave, the intensity 200 

of each heatwave day (defined below) and the total number of heatwave days that occur over 201 

the length of the dataset, i.e. the frequency. The total number of heatwave days is analysed, 202 

rather than the number of heatwave events, because the future change in heatwaves in the 203 

climate models is so large that most days in the future are diagnosed as heatwaves, so the 204 

number of events can decrease whilst the number of heatwaves days increases, and so 205 

analysing the number of heatwave events (and the heatwave duration) is mis-leading. 206 

 207 

Figure 1 Illustration of the heatwave identification method for one arbitrary gridbox in CP4. 208 

(b) and (c) are consecutively zoomed in views of (a). The black dots represent daily Twbmax over 209 

an example 3 year time slice. The blue line is the 90th percentile of Twbmax over a 31-day running 210 

window. The red solid and dashed lines are the 97th and 98.9th percentiles respectively of 211 

Twbmax over all days and all years. The dots in (c) show the unit-less heat intensity on each 212 

identified hot day. 213 

 214 

The intensity of each heatwave day is computed using a modified version of Equation 2 in 215 

Russo et al. (2015): 216 

𝐼 =
𝑇𝑤𝑏𝑚𝑎𝑥 − 𝑇𝑤𝑏𝑚𝑎𝑥_97𝑝

𝑇𝑤𝑏𝑚𝑎𝑥_98.9𝑝 − 𝑇𝑤𝑏𝑚𝑎𝑥_97𝑝
 217 
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where Twbmax_98.9p is the 98.9th percentile of daily maximum wet bulb temperature over all 218 

days in the dataset (red dashed line, Figure 1). I is a dimensionless measure of the intensity 219 

of each heatwave day relative to the variability of the hottest days that occur in each grid box. 220 

This heatwave methodology was chosen because: (1) it is a percentile-based metric, which 221 

allows ERA5 and the climate models to be directly compared regardless of differences in their 222 

mean climatology of temperature and humidity, (2) it is computed for each gridbox 223 

separately, which allows the widely varying climates in Africa to be directly compared, and (3) 224 

it is possible to look at the intensity, duration and frequency of heatwaves as separate 225 

metrics. 226 

Heatwaves in CP4FUT and P25FUT are computed twice: once relative to the present-day 227 

baseline (i.e Twbmax_31d90p, Twbmax_97 and Twbmax_98.9p are taken from the present day simulation 228 

at each gridbox) and once relative to the future climate baseline (i.e Twbmax_31d90p, Twbmax_97 229 

and Twbmax_98.9p are taken from the future climate simulation at each gridbox). Heatwaves 230 

computed using the present-day baseline are used throughout the paper, except in Figures 231 

13, 15 and 16, where the future change in heatwave drivers is assessed. Future heatwaves 232 

are so frequent and long in duration under climate change that identifiable individual 233 

heatwaves do not exist in the future. Therefore, using the future climate baseline diagnoses 234 

a similar number of discrete heatwaves as are diagnosed in the present day. 235 

Dry-bulb heatwaves are computed in the same way as above, by replacing Twbmax with Tmax. 236 

The only other difference is that the two percentile thresholds (red solid and dashed lines in 237 

Figure 1) are set at Tmax_98 and Tmax_99.9p for dry-bulb heatwaves, rather than the 97th and 98.9th 238 

percentile used for Tmax.  There is no clear choice of percentile in the literature, with different 239 

authors choosing to use different values (Guigma et al. 2020; Lyon 2009; Raymond et al. 2021; 240 

Russo et al. 2015). The consequence of using different percentiles for Tmax and Twbmax 241 

heatwaves is that the values of intensity are not directly comparable. However, it is done to 242 

make the number of Tmax and Twbmax heatwaves diagnosed in the present day similar, to 243 

provide consistency for the heatwave driver analysis. 244 

For ERA5 we use two periods: (1) 1997-2006 for comparison of the ERA5 heatwave metrics to 245 

the present day climate simulations and (2) 2000-2019 when looking at atmospheric 246 

heatwave drivers, in order to align with the availability of the GPM rainfall observations. Here, 247 
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we also compare with the period 1987-2016 to assess the impact of using a longer timeseries 248 

on the heatwave metrics. The mean and standard error of the pan-African heatwave metrics 249 

in ERA5 over 1997-2006, 1987-2016 and 2001-2019 are intensity: 1.36±0.002, 1.41±0.002, 250 

1.50±0.002, duration: 3.93±0.003, 4.01±0.002, 3.97±0.002 days and frequency: 2.5±0.05, 251 

2.7±0.16, 2.5±0.10 days per year respectively. These are negligible differences apart from in 252 

intensity, where a small climate change signal of higher intensity in later years is apparent, 253 

consistent with previous studies (Ceccherini et al. 2017). The relative importance of the 254 

different heatwave drivers is not dependent on the period used (not shown).   255 

Figure 2 illustrates the resulting Twbmax heatwave diagnosis in P25 and CP4 for an example day. 256 

The methodology is able to identify large, spatially coherent heatwaves. 25 June 2001 is more 257 

than 4 years into the climate simulation, so the fact that both climate models produce a 258 

heatwave of a similar size and location at the same time, suggest that the lateral boundary 259 

conditions and SSTs (which are the same in both simulations) have a strong control on this 260 

event.   261 

 262 

Figure 2 Example heatwave on 25 June 2001 in P25 and CP4. The gridboxes where a heatwave 263 

was identified on this day are marked in red. Also shown are the sub regions used later in the 264 

analysis and the locations of the three weather stations used in Figure 3. GoG = Gulf of Guinea. 265 

 266 
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2.4. Daily vs. hourly specific humidity values in Twbmax calculation 267 

The mean diurnal cycle of near-surface specific humidity and wet and dry bulb temperature 268 

from ERA5, P25 and CP4 are plotted against observations from the three automatic weather 269 

stations (Figure 3). Specific humidity has a diurnal cycle that is out of phase with the diurnal 270 

cycle in dry-bulb temperature at both locations, which is consistent with dry-air entrainment 271 

into the boundary layer during the day and moisture advection at night (Couvreux et al. 2015). 272 

This has a strong control on the magnitude and timing of Twbmax, causing a flattening of the 273 

diurnal peak of wet bulb temperature (solid lines, Figure 3c,f,i).  274 

Due to the lack of availability of sub-daily humidity diagnostics from ensemble model studies 275 

such as CMIP5 (Taylor et al. 2012), CMIP6 (Eyring et al. 2016) and CORDEX (Gutowski Jr et al. 276 

2016), past studies that diagnose humid heatwaves using the daily maximum wet bulb (or wet 277 

bulb globe, WBGT) temperature (e.g. Russo et al. (2017) and Coffel et al. (2017)) necessarily 278 

use the daily mean, minimum or maximum humidity to compute daily maximum humid-heat 279 

metrics. Using daily mean specific humidity in the calculation of Twbmax produces a smooth 280 

diurnal cycle in wet-bulb temperature, which follows the shape of the diurnal cycle of dry bulb 281 

temperature (dashed lines, Figure 3c,f,i). The impact of the choice of daily or sub-daily specific 282 

humidity on the present-day heatwave metrics used in this study is strikingly large and 283 

perhaps unpredictable, with no clear trend in the direction of the impact in ERA5, CP4 and 284 

P25 (Figure S1). The future change in wet-bulb heatwave intensity, duration and frequency 285 

are overestimated in both CP4 (by 106, 40 and 16% respectively) and P25 (by 73, 16 and 3% 286 

respectively) when daily specific humidity is used in the Twbmax calculation (Figure S1). This is 287 

particularly important for wet-bulb temperature, which is the most sensitive to humidity out 288 

of the most frequently used humidity-temperature indices (Sherwood 2018).  289 
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 290 

Figure 3 Mean diurnal cycle of near-surface dry bulb temperature (left), near-surface specific 291 

humidity (middle) and wet bulb temperature (right) at the locations of the surface stations in 292 

South Africa (top), Sudan (middle) and Niger (bottom). Wet-bulb temperature is computed 293 

using both hourly and daily mean q. Using daily mean or hourly surface pressure has negligible 294 

impact on the wet-bulb calculation. The locations of the three stations are illustrated in Figure 295 

2. 296 

 297 

2.5. Computation of anomalies and climatologies 298 

Data in Figures 10, 14, 15 and 16 are presented as mean anomalies relative to a locally and 299 

temporally relevant climatology. For each heatwave diagnosed in ERA5 and the model 300 

simulations, a daily mean timeseries of each variable is extracted for a 31 day period, from 301 

day -15 to day +15, where day 0 is the onset of the heatwave. The local (i.e. gridbox specific) 302 
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daily mean annual cycle (31 values), smoothed using a 50-day running window, is subtracted 303 

from each 31-day timeseries to produce anomalies from the mean climatology at the relevant 304 

time of year. The bars in Figures 10, 14, 15 and 16 are an average of each anomaly over the 305 

first 3 days of all diagnosed heatwaves, so that each heatwave is weighted equally in the 306 

analysis. The exception is the humidity and temperature advection (qadv, Tadv) in Figures 10 307 

and 14, which are presented as absolute values for ease of interpretation. 308 

2.6. Statistical testing of rainfall distribution 309 

The Wilcoxon matched-pairs signed rank test is used to assess whether the distribution of 310 

daily rainfall accumulations on heatwave days is statistically significantly different (p<0.01) to 311 

the climatological distribution of rainfall. For each heatwave, taking d-5 to d5 in turn (where 312 

the first day of the heatwave is d0), the difference between the rainfall accumulation on dx 313 

and the rainfall accumulation on d-15 is computed, where d-15 is far enough away in time 314 

from the heatwave event to be sufficiently independent. The Wilcoxon signed rank test is 315 

performed 10,000 times on 1000 randomly selected difference-pairs for each day from d-5 to 316 

d5. This process is then repeated using daily rainfall accumulation on d+15, to allow for 317 

seasonal changes in rainfall between d-15 and d+15, which can be large around the time of 318 

monsoon onset.  319 

The Wilcoxon matched-pairs signed rank test determines whether two dependent samples 320 

were selected from populations having the same distribution i.e. the null hypothesis is that 321 

the medians of the heatwave and climatological rainfall are equal. It is an appropriate test 322 

because rainfall data does not have a normal distribution, rather there are many more dry 323 

and/or low rainfall days than wet days.  324 

3 Results 325 

3.1 Annual mean temperature and humidity 326 

An assessment of the mean dry bulb temperature shows that there is a cold bias of 1.24 and 327 

1.39°C in mean near-surface dry bulb temperature in CP4 compared to ERA5 and CRU 328 

respectively (Figure 4e,f). P25 is also biased cold, but only by 0.22 and 0.37°C respectively 329 

(Figure 4b,c). In both the present day and future climate, CP4 is on average ~1°C cooler than 330 

P25 (Figure 4g,h). CP4 and P25 simulate future mean temperature increases by 2100 of 6.3 331 
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and 6.4°C respectively (Figure 4a,d), with P25 projecting a smaller increase in Central Africa 332 

and CP4 predominately projecting a smaller increase elsewhere (Figure 3i).  333 

Compared to ERA5, CP4 and P25 have a mean dry bias of 0.88 and 0.50 g/kg in specific 334 

humidity respectively, although P25 is wetter by 1-2 g/kg over Central Africa (Figure 5b,d). 335 

Both CP4 and P25 project mean future increases in specific humidity of ~3.4 g/kg (Figure 5a,c) 336 

but the future change is ~1.5 g/kg larger in P25 over Central Africa and ~0.5 g/kg larger in CP4 337 

elsewhere (Figure 5g). The resulting impact on mean wet-bulb temperature is a cold bias 338 

relative to ERA5 of 1.1 and 0.5°C in CP4 and P25 respectively (Figure 6b,d), although the 339 

humidity bias in P25 in Central Africa produces a warm bias in wet-bulb temperature of 0.5-340 

1°C. P25 is on average 0.6-0.7 °C warmer than CP4 in wet-bulb temperature in both the 341 

present day and future, with a large region of central Africa being up to 2 °C warmer (Figure 342 

6e,f). The future change in mean wet-bulb temperature is ~4.4°C in both CP4 and P25 (Figure 343 

6a,c), with spatially variable differences in the future change between P25 and CP4 that are 344 

fairly small due to the compensating effects of humidity and temperature biases in the 345 

calculation of wet bulb temperature (Figure 6g). The cold and dry biases are consistent with 346 

those in other climate models (Fischer; Knutti 2013; Zhao et al. 2015). 347 
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348 
Figure 4 Mean near-surface dry-bulb temperature. (a,d) mean future changes, (b,e) difference 349 

between present-day model simulations and ERA5, (c,f) difference between present-day 350 

model simulations and CRU, (g,h,i) differences between P25 and CP4 in the present-day, 351 

future and the future change.  352 
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 353 

Figure 5 Mean near-surface specific humidity. (a,d) mean future changes, (b,d) difference 354 

between present-day model simulations and ERA5, (e,f,g) differences between P25 and CP4 355 

in the present-day, future and the future change. 356 
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 357 

Figure 6 Mean near-surface wet bulb temperature. (a,d) mean future changes, (b,d) 358 

difference between present-day model simulations and ERA5, (e,f,g) differences between P25 359 

and CP4 in the present-day, future and the future change. 360 
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3.2 Wet and dry bulb heatwave metrics 361 

Summaries of present day and the future change in intensity, duration and frequency of Twbmax 362 

and Tmax heatwaves in ERA5, P25 and CP4 (and BEST for Tmax) are shown in Figure 7. For Tmax 363 

intensity, there is relatively good agreement between ERA5, BEST and both climate models 364 

(Figure 7g). For Twbmax intensity, both CP4 and P25 are skewed towards intensities <1, 365 

although CP4 much less so and is, therefore, in much better agreement with ERA5 (Figure 7a). 366 

There is good agreement between P25, CP4 and ERA5 (and BEST for Tmax heatwaves) for both 367 

Twbmax and Tmax heatwave duration, with present day mean heatwave lengths of ~4 days 368 

(Figure 7b,h). For frequency, there is reasonable agreement between the climate models and 369 

observations for Tmax heatwaves, with on average 2.4-3.0 days/yr (Figure 7i). For wet bulb 370 

heatwaves, the distribution of heatwave frequency in P25 is skewed towards lower values, 371 

with a mean in P25 of 1.8 days/yr compared with values of 2.7 days/yr and 2.5 days/yr in CP4 372 

and ERA5 respectively (Figure 7c). 373 

By 2100, under RCP8.5 both CP4 and P25 simulate large increases in all three metrics for both 374 

Twbmax and Tmax heatwaves. Considering both types of heatwaves and both model simulations, 375 

the ranges of future increases are +1.5 to +3.7 for intensity, +9 to +21 days for length, and 376 

+145 to +178 days/yr for frequency (Figure 7d-f and j-l). The frequency increase can be 377 

interpreted as, on average over all of Africa, up to half of all days of the year will experience 378 

heat and/or humidity conditions that currently only occur on the annual hottest/most humid 379 

2 to 3 days. With such large increases, the future heatwave duration metric becomes 380 

inappropriate and the focus should be on the total number of heatwave days per year (i.e. 381 

the frequency) and the intensity. 382 

For Twbmax heatwaves, the future change in intensity is 56% higher in CP4 than in P25 (Figure 383 

7d) and the future change in frequency is 20% higher in CP4 than P25 (Figure 7f). For Tmax 384 

heatwaves the future change in intensity is only 10% higher in CP4 than P25 (Figure 7j) and 385 

the future change in frequency is actually 5% higher in P25 than CP4 (Figure 7l). The model 386 

differences and future changes are broadly similar in all six of the sub regions illustrated in 387 

Figure 2 (not shown). Clearly there is much more disagreement between CP4 and P25 in the 388 

future change of Twbmax heatwaves than Tmax heatwaves. Processes such as moisture 389 

transport, cloud, evaporation and rainfall are potentially key drivers of humid heatwaves, and 390 

it is known from previous work that moist processes are generally better represented in 391 



20 
 

convective-scale models than models with parameterised convection (Finney et al. 2020; 392 

Finney et al. 2019; Jackson et al. 2020; Kendon et al. 2019). The following section diagnoses 393 

and compares the drivers of Twbmax and Tmax heatwaves over the African continent. 394 

 395 
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Figure 7 Present day and future change in pan-African heatwave metrics in ERA5, P25, CP4 396 

(for both Twbmax and Tmax heatwaves) and BEST (for Tmax heatwaves only). (a-c) present day 397 

Twbmax heatwaves, (d-f) future change in Twbmax heatwaves, (g-i) present day Tmax heatwaves, 398 

(j-l) future change in Tmax heatwaves. All data is for the period 1997-2006.  The numbers in 399 

the legends represent the mean and standard error of each distribution. The data in the 400 

intensity and duration distributions only includes times and locations where heatwaves were 401 

diagnosed and is presented as a frequency of occurrence (i.e. the distribution is divided by 402 

the total number of heatwaves diagnosed). The frequency distribution is a count of the 403 

number of model grid boxes in each frequency bin. 404 

 405 

3.3 Drivers of present day wet and dry bulb heatwaves 406 

Figure 8 shows the mean annual cycle of ERA5 near-surface humidity, dry and wet bulb 407 

temperature and GPM rainfall for the 6 sub-regions illustrated in Figure 2. Tmax heatwaves 408 

occur most frequently in the months with the highest mean dry bulb temperature, generally 409 

before the onset of the rainy season. For example, Tmax heatwaves occur most frequently in 410 

the Gulf of Guinea (GoG) in Feb-Apr before the onset of the monsoon season in May/June. In 411 

contrast, Twbmax heatwaves occur most frequently at least a month later, when temperatures 412 

are still hot but the humidity is beginning to increase. The difference in the timing of Twbmax 413 

and Tmax heatwaves is largest in the Sahel, where Tmax heatwaves occur in March-May, 414 

consistent with previous studies (Barbier et al. 2018; Guigma et al. 2020; Largeron et al. 2020), 415 

but Twbmax heatwaves occur most frequently in July-Sept, when the mean dry bulb 416 

temperature is lower but the mean wet bulb temperature and rainfall is highest.  417 
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 418 

Figure 8 Mean present day annual cycles over the African sub-regions, as defined in Figure 419 

2a. (a) dry-bulb temperature, (b) wet-bulb temperature,(c), specific humidity from ERA5 and 420 

(d) rainfall from GPM. The dots and crosses represent the three months of the year in each 421 

region with the highest occurrence of present day Twbmax and Tmax heatwaves respectively. 422 

 423 

It is important to understand if rainfall is a driver of and/or a response to humid heatwaves 424 

because it is known that models with parameterised convection struggle to represent rainfall 425 

frequency and intensity (Fiedler et al. 2020) and because there may be a growing risk of 426 

compound heat-flood hazards under climate change (Liao et al. 2021; You; Wang 2021). 427 
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Figure 9 shows composites of the anomaly of wet day occurrence 5 days before (d-5) to 5 428 

days after (d5) the onset of Twbmax and Tmax heatwaves, relative to the weighted climatology 429 

of wet day occurrence (see Section 2.5). Wet days are defined as daily rainfall accumulations 430 

of >1 mm. Table 1 shows the percentage of Twbmax and Tmax heatwaves where the first day of 431 

the heatwave (day 0) is defined as a wet day, compared to the occurrence of wet days in the 432 

weighted climatology.  433 

 434 

 435 

 436 

Figure 9 Composite of wet day (>1 mm/day) occurrence during heatwaves minus wet day 437 

occurrence in the weighted climatology for (a) Twbmax and (b) Tmax heatwaves over the pan-438 

African region. Day 0 is the first day of each heatwave. The climatological values take into 439 

account the fact that heatwaves do not occur uniformly in time or space. The climatology is 440 

computed by finding a mean of the frequency of occurrence of wet days in each rainfall 441 

category 15 days before and after each heatwave (d-15 and d15). For ERA5 and the four 442 
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climate model simulations, when considering the full datasets, the heatwave rainfall 443 

distributions on days -5 to 5 are all statistically significantly different to climatology (Wilcoxon 444 

matched-pairs signed rank test, p<<0.01, see Section 2f), which shows that the rainfall 445 

distributions do not come from the same population. The days marked with a dot are when 446 

>90% of the Wilcoxon tests performed 10,000 times on 1000 randomly selected difference-447 

pairs have a p value of p<0.001. 448 

 Twbmax 

(%) 
Tmax 

(%) 

 1st day of 
heatwave 

Climatology 1st day of 
heatwave 
 

Climatology  

ERA5-GPM 32.3 22.9 2.5 11.1 

CP4 35.0 16.1 0.8 8.8 

CP4FUT 40.3 14.1 0.9 9.3 

P25 56.5 34.8 3.0 21.2 

P25FUT 58.9 34.1 2.7 23.8 

Table 1 Percentage of Twbmax and Tmax heatwaves associated with wet days (defined as daily 449 

rainfall accumulations of >1 mm). Data is presented for the 1st day of each heatwave and a 450 

climatological value for comparison, which is weighted for the months and locations in which 451 

the heatwaves occur: it is a mean of the rainfall 15 days prior to and 15 days after the 1st day 452 

of each heatwave. For all heatwave-climatology rainfall pairs the Wilcoxon matched-pairs 453 

signed rank test shows that the rainfall distributions do not come from the same population 454 

(p<<0.01, see Section 2.6). An expanded version of this table, showing, for each model, the 455 

distribution of rainfall daily accumulations on the 1st day of each heatwave and the difference 456 

between the rainfall climatologies 15 days prior to and after the 1st day of each heatwave is 457 

presented in Table S1. 458 

 459 

ERA5-GPM and all four climate model simulations show a positive anomaly in wet days 460 

between d-5 and d+5 after the commencement of Twbmax heatwaves (Figure 9a). For all 461 

heatwave-climatology rainfall pairs in Table 1 and Figure 9, the Wilcoxon matched-pairs 462 

signed rank test shows that the rainfall distributions do not come from the same population 463 

(p<<0.01, see Section 2.6), so the differences in rainfall on heatwave days and in the 464 

climatology are statistically significant. The dots on Figure 9 show where the anomalies are of 465 

the highest statistical significance (see Figure 9 caption). The wet day anomaly in ERA5-GPM 466 

peaks between d0 and d3 of the heatwaves, whereas the peak in the climate models occurs 467 

the day before the onset of the heatwave (d-1).  468 
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It is not clear why there is a difference in the timing of the peak between ERA5-GPM and the 469 

models, which means in a pan-African sense at least, it is not clear whether rainfall drives 470 

Twbmax heatwaves through evaporation, or the rainfall is a consequence of the increased 471 

humidity. However, evaporation from rain that falls during a Twbmax heatwave is likely to help 472 

prolong it by maintaining higher levels of near-surface humidity. Splitting the plot into the six 473 

sub regions provides more insight (see Section 3.4.2).  474 

In ERA5-GPM, Twbmax heatwaves commence on wet days 32.3% of the time compared to an 475 

occurrence of wet days 22.9% of the time in climatology i.e wet days occur almost 10% more 476 

often on the first day of a Twbmax heatwave than they occur climatologically (Table 1). The 477 

pattern in the present day climate models is similar but more extreme, with Twbmax heatwaves 478 

commencing on wet days 56.5% of the time in P25 (compared to wet days occurring 34.8% of 479 

the time in climatology) and on wet days 35.0% of the time in CP4 (compared to wet days 480 

occurring 16.1% of the time in climatology). For both models, Twbmax heatwaves commence 481 

about 20% more frequently on wet days than wet days occur in the climatology. The 482 

differences in the absolute percentages are due to the known differences in the distribution 483 

of rainfall intensity in the convective-scale and parameterised CP4 and P25 models, where 484 

parameterised models are known to have more frequent but lower rainfall rates compared 485 

to observations (see Table S1 for more detail and (Kendon et al. 2021; Kendon et al. 2014; 486 

Prein et al. 2015)). Under climate change, the timing of the peak in wet anomaly stays the 487 

same (Figure 9a) but a larger percentage of Twbmax heatwaves commence on wet days (change 488 

from 35.0 to 40.3% in CP4 and 56.5 to 58.9% in P25), even though wet days occur 489 

approximately the same amount or even slightly less frequently in the climatology of the 490 

future simulations (Table 1).  491 

The same relationship between present day heatwaves and rainfall is not, however, apparent 492 

for Tmax heatwaves. More than 5 days prior to heatwave onset there is a negative anomaly in 493 

wet day occurrence compared to climatology, which peaks at the onset of the heatwave 494 

(Figure 9b). By d5 (i.e. after most heatwaves have finished), the wet day occurrence has 495 

returned to the climatological value. In ERA5, 2.5% of Tmax heatwaves commence on wet days, 496 

compared to wet days occurring on 11.1% of days climatologically (Table 1). Both CP4 and 497 

P25 are in broad agreement with ERA5, in that 0.8% and 3.0% of Tmax heatwaves respectively 498 

commence on wet days, compared to wet days occurring 8.8 and 21.2% of the time 499 
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respectively in the climatology. There is only a very small change in these percentages with 500 

climate change.  501 

We now compare the drivers of Twbmax and Tmax heatwaves in ERA5. Figure 10 shows the mean 502 

anomalies of several key variables averaged over the first 3 days of each Twbmax and Tmax 503 

heatwave diagnosed in ERA5, relative to a weighted climatology (see Section 2.5). For Twbmax 504 

heatwaves, the anomaly in daily mean dry bulb temperature is relatively small (+0.32°C) and 505 

there is a large (+3.2 g/kg) anomaly in daily mean specific humidity (blue bars, Figure 10a,b). 506 

The anomaly in top of atmosphere Outgoing Longwave Radiation (OLR) is -12 Wm-2, which 507 

indicates increased cloud occurs during Twbmax heatwaves compared to climatology. Increased 508 

cloud and moisture leads to a decrease in the surface net shortwave radiation flux, SWnet, of 509 

5 Wm-2 and an increase in the surface net longwave radiation flux, LWnet, of 15 Wm-2. The 510 

sensible heat flux, H, decreases by 8 Wm-2 but the latent heat flux, E, increases by 18 Wm-2. 511 

The sum of the anomalies of the radiative terms approximately balance the sum of anomalies 512 

in the turbulent fluxes, both with a net anomaly of +10 Wm-2 (right hand blue bars, Figure 513 

10d). Humidity advection is positive (moistening) but small, at +0.025 gkg-1 day-1 (Figure 10e) 514 

compared to the anomaly in mean humidity of +3.2 g/kg. Temperature advection is negative 515 

(cooling) and also small, at -0.022 °C day-1 (Figure 10f), compared to the anomaly in mean 516 

temperature of 0.32 °C of the opposite sign.  517 
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 518 

Figure 10 Anomalies relative to climatology of key ERA5 variables over the pan-Africa region 519 

during Twbmax and Tmax heatwaves diagnosed in ERA5. (a) near-surface daily mean dry bulb 520 

temperature, (b) near-surface daily mean specific humidity, (c) outgoing longwave radiation, 521 

(d) surface net shortwave radiation, longwave radiation, sensible heat flux, latent heat flux 522 

and the sum of the radiative and turbulent terms, (e) 850 hPa moisture advection, (f) 850 hPa 523 

temperature advection. All variables are averaged over the first 3 days of each heatwave. All 524 

variables are presented as anomalies from the climatological annual cycle (see Section 2e), 525 

apart from qadv and Tqdv, which for ease of interpretation, are the absolute values. The data 526 

for ERA5 are for heatwaves during the period 2001-2019 to align with the availability of GPM 527 

rainfall data plotted in Figure 9. The error bars represent the standard error. 528 
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 529 

Conversely, Tmax heatwaves occur during much larger daily mean dry bulb temperature 530 

anomalies of +3.2°C and dry specific humidity anomalies of -1.4 g/kg, compared to 531 

climatology. The OLR anomaly is +13 Wm-2, indicating lower, warmer cloud or a lower cloud 532 

fraction compared to climatology. SWnet increases by 13 Wm-2 and LWnet decreases by a 533 

similar amount. H increases by 3.5 Wm-2 and E decreases by 8.6 Wm-2. Humidity advection is 534 

negative (drying) but small, at -0.063 gkg-1 day-1 (Figure 10e), compared to the anomaly in 535 

mean humidity of -1.4 gkg-1 (Figure 10b). Temperature advection is positive (warming) but 536 

small, at +0.01 °C day-1 (Figure 10f), compared to the positive anomaly in mean temperature 537 

of 3.2 °C (Figure 10a). 538 

In summary, in a pan-African sense, the main driver of Twbmax heatwaves is increased 539 

atmospheric moisture, cloud, rainfall and low Bowen ratio (high surface latent heat flux), 540 

leading to higher humidity and increased absorption of longwave radiation within the 541 

atmospheric column i.e. the water vapour and cloud greenhouse effect. In contrast, Tmax 542 

heatwaves are driven by decreased cloud cover, increased surface SWnet and a high Bowen 543 

ratio (high surface sensible heat flux). These results are based on reanalysis, which is itself a 544 

model with parameterised convection. It is likely reanalysis is a better representation of dry-545 

bulb heatwaves because they occur at times without cloud and rainfall because moist 546 

processes are more challenging to represent in models, especially those with parameterised 547 

convection (Fiedler et al. 2020).  548 

Given the key role of moist processes in Twbmax heatwaves, their importance for human health 549 

(Armstrong et al. 2019), the fact that the model difference between P25 and CP4 in the future 550 

change in Twbmax heatwaves is much larger than for Tmax heatwaves (Figure 7), and the known 551 

differences in the representation of moist processes in convective-scale and convection-552 

parameterised models, the remainder of the paper will focus on Twbmax heatwaves. It will 553 

examine the heatwave metrics and drivers on a regional basis and the reasons why the 554 

convective-scale climate model projects a larger future change in Twbmax heatwaves.   555 
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3.4 Regional analysis of Twbmax heatwaves 556 

3.4.1 Spatial variability of Twbmax heatwaves 557 

Figure 11 shows maps of the present day Twbmax heatwave metrics in ERA5, P25 and CP4. The 558 

white speckling in the intensity and duration plots illustrates regions where no heatwaves are 559 

diagnosed in the entire 10 year period. A diagnosis of no heatwaves is possible at locations 560 

where there are no occurrences of 3 consecutive hot days. No present day heatwaves were 561 

diagnosed in 0.4% of ERA5 gridboxes, 4.4% of P25 gridboxes and 1.0% of CP4 gridboxes. 562 

Intensity is fairly uniform to the south of the equator in all three datasets (Figure 11a-c). ERA5 563 

produces intensity hotspots in the Sahel and Sahara, whereas there are many gridboxes in 564 

P25 over the Sahel where no heatwaves are diagnosed over the 10 year period. CP4 produces 565 

a spatial distribution of intensity closer to that in ERA5, with an intensity hotspot between 10 566 

and 30°N, although it is not as intense as in ERA5. Hotspots of mean heatwave duration of 5 567 

or more days and frequency of 4 or more heatwave days per year are apparent in ERA5 across 568 

the Sahel and Sahara, in East Africa and along the southern African west coast (Figure 11d,h). 569 

The spatial distribution in CP4 is again closer to the distribution in ERA5 than P25. The hot 570 

spot between 10 and 30°N in ERA5 is not apparent in P25, rather it is a region of short duration 571 

or no heatwaves (Figure 11e,f,I,j).  572 
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573 
Figure 11 Present day Twbmax heatwave metrics. (a-c) intensity, (d-f) duration and (h-j) 574 

frequency for ERA5 (left), P25 (middle) and CP4 (right). The boxes in (a) show the analysed 575 

sub-regions. The white speckled pixels are regions where no heatwaves in 10 years were 576 

diagnosed. 577 

 578 

Maps of the future change in the three heatwave metrics in P25 and CP4, and the difference 579 

in the future change (P25 future change minus CP4 future change) are shown in Figure 12. In 580 

both climate models there are hot spots in the future change of intensity along the equatorial 581 

belt between 20°S and 5°N, with particularly high values along the GoG coast (Figure 12a,b). 582 

The highest values, of +3 or more, extend across most of sub-Saharan North Africa in CP4. 583 

Overall, the future change in intensity is larger almost everywhere in CP4 than P25 (mean 584 

changes of +3.67 in CP4 compared with +2.35 in P25, Figure 7d), with the largest differences 585 

between the two model simulations 5-15°N and 10-20°S. There are some small patches near 586 

the equator where the change in P25 is greater than in CP4, which are consistent with the 587 

fact that P25 has a greater increase in total column water vapour nearer the equator, linked 588 
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to model differences in the changing Hadley circulation (Jackson et al. (2020) and Figure 5g 589 

showing specific humidity). 590 

There is a clear hotspot in the future change in frequency and duration over equatorial Africa 591 

(10°S to 10°N) in both P25 and CP4 , which tends to be larger in the more humid West African 592 

coast and Central Africa/Congo, rather than the drier East African region. The future change 593 

in duration outside this region is up to approximately +20 days, however, within the 594 

equatorial belt both models simulate values of greater than +80 days (Figure 12d,e). The 595 

future change in duration in CP4 is larger overall compared to that in P25 (+21 and +15 days 596 

respectively, Figure 7e). The change is larger north of ~7°N in CP4, whereas the change is 597 

larger in P25 over GoG and parts of Central Africa. The measure of duration does, however, 598 

break down under climate change as the number of heatwave days per year increases so 599 

much therefore, it is better to focus on the intensity and frequency metrics. 600 

There is good agreement between CP4 and P25 in the spatial distribution of the future change 601 

in frequency, with both models simulating future increases of more than +200 days/yr in the 602 

equatorial belt, with largest changes in humid regions, and values of more than +100 days/yr 603 

elsewhere (Figure 12h,i). CP4 simulates larger future changes in frequency than P25 (means 604 

of +178 days/yr compared to +148 days/yr, Figure 7f) everywhere apart from a small region 605 

in Central Africa (Figure 12j), again consistent with the greater total column water vapour 606 

increase seen in P25 in this region (Jackson et al. 2020).   607 

In summary, the simulations show that by 2100 under RCP8.5, conditions experienced on the 608 

present-day wet-bulb heatwave days will be experienced consistently throughout the 609 

hottest/wettest three months of the year and over the equatorial belt, these conditions will 610 

be experienced up to 50% of the time. The hot spot in the future change in Twbmax heatwave 611 

frequency over equatorial Africa is consistent with previous global studies (Coffel et al. 2017; 612 

Mora et al. 2017) and is co-located with the area of largest future change in mean humidity, 613 

where humidity increases by more than 2 gkg-1 (compared to pan-African increases of <+0.5 614 

gkg-1, Figure 5a,c). 615 
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616 
Figure 12 Future change in Twbmax heatwave metrics. (a-c) intensity, (d-f) duration and (h-j) 617 

frequency for P25 (left), CP4 (middle) and the difference in the future change (left minus 618 

middle, right). The boxes in (f) and (j) show the analysed sub-regions. 619 

 620 

3.4.2 Twbmax heatwaves and rainfall 621 

Figure 13 shows composites of wet day (>1 mm/day) occurrence relative to climatology 622 

around the time of the onset of Twbmax heatwaves. There are larger, more statistically 623 

significant wet day anomalies over the relatively arid regions of the Sahara, Sahel, EAfrica and 624 

SAfrica. In the Sahara the peak in wet day anomaly coincides with the first day of the Twbmax 625 

heatwave in ERA5-GPM and the four climate model simulations. ERA5-GPM wet days occur 626 

23.6% of the time on the first day of a Twbmax heatwave, compared to wet days occurring 4.3% 627 

of the time in the weighted climatology (the day 0 percentages for all models and regions are 628 

shown in Table S2). In the Sahel, EAfrica and SAfrica the picture is less clear with wet day 629 

anomalies peaking between d-1 and d+1 in ERA5 and the various models. One must 630 

remember here that ERA5-GPM cannot be considered as ‘observations’ or ‘truth’ in this 631 
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context because ERA5 itself is a parameterised convection model and there may not be full 632 

consistency between Twbmax heatwaves diagnosed in ERA5 and the rainfall from GPM. 633 

GoG and CAfrica have different behaviour, with smaller positive wet day anomalies in the four 634 

climate model simulations and negative anomalies in ERA5-GPM between d-1 and d+1. GoG 635 

and CAfrica can be considered as moist equatorial regions, with a lower amplitude annual 636 

cycle of humidity and wet bulb temperature and higher mean annual rainfall (Figure 8b-d). 637 

Although EAfrica is also within the equatorial belt, it is generally more arid than GoG and 638 

CAfrica, with a low amplitude mean annual cycle of humidity but more moderate rainfall.  639 

Apart from in the Sahara, the percentage of Twbmax heatwaves associated with wet days 640 

decreases or stays almost the same under climate change in all regions and both climate 641 

models (Figure 13 and Table S2). Climatologically, the number of wet days decreases in both 642 

P25 and CP4 (Table S2). The exceptions are in the Sahara, where wet days increase in both 643 

P25 and CP4 and in EAfrica, where they increase in P25. A broad decrease in wet days is 644 

consistent with Kendon et al. (2019), who report future increases in dry spell length in the 645 

same set of climate model simulations. Since the percentage of climatological wet days and 646 

the percentage of heatwaves that occur on wet days both decrease, the overall impact on 647 

Twbmax heatwave drivers is minimal.  This suggests that the same combination of drivers cause 648 

wet-bulb heatwaves in both the present day and under future climate change, and the future 649 

increases in wet-bulb heatwaves are driven by larger anomalies in these drivers. 650 

 651 
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 652 

Figure 13 Composites of wet day (>1 mm/day) occurrence during heatwaves minus wet day 653 

occurrence in the weighted climatology for Twbmax heatwaves only and for each of the 6 sub 654 

regions. Day 0 is the first day of each heatwave. The dots represent the days with the largest 655 

differences between the heatwave and climatological rainfall distributions (see Figure 9 656 

caption for more details). The rainfall climatologies are computed in the same way as in Figure 657 

9. 658 

  659 
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3.4.3 Drivers of Twbmax heatwaves 660 

Figure 14 shows the anomalies of key variables averaged over the first 3 days of each Twbmax 661 

heatwave, separately for each sub region and for ERA5 only. Unlike the equivalent plot for 662 

Tmax heatwaves (Figure S2), there are large regional differences in the sign of the anomalies in 663 

the Twbmax heatwave plot. The Sahel experiences negative dry bulb temperature anomalies 664 

(i.e. cooler than climatology), whereas the equatorial regions of GoG and CAfrica experience 665 

positive dry bulb temperature anomalies during Twbmax heatwaves (Figure 14a). Dry bulb 666 

temperature anomalies in the other regions are small. There are positive anomalies in specific 667 

humidity in all six regions, however, the magnitude is smaller over the already humid GoG 668 

and CAfrica. Overall, Twbmax heatwaves are driven by higher values of both dry bulb 669 

temperature and humidity in the most humid regions of GoG and CAfrica, but are primarily 670 

driven by higher values of humidity elsewhere.  671 

Equatorial GoG and CAfrica also behave differently to the other regions in terms of the 672 

anomalies in OLR and the surface energy budget terms (Figure 14c). GoG and CAfrica 673 

experience small positive anomalies in OLR (i.e. decreased cloud), which leads to positive 674 

anomalies in SWnet, near-zero anomalies in LWnet, near zero anomalies in H and a small 675 

positive anomaly in E. Conversely, the other regions experience large negative anomalies in 676 

OLR (i.e. increased cloud), which drives negative SWnet anomalies, positive LWnet anomalies, 677 

negative H anomalies and large positive E anomalies. Moisture and temperature advection 678 

(shown as absolute values, rather than anomalies for ease of interpretation in Figure 14e,f) 679 

are small in all five regions.  680 

In summary, the key Twbmax heatwave drivers in the Sahara, Sahel, EAfrica and SAfrica are 681 

broadly the same as the pan-African mean in Figure 10, where high humidity, increased cloud, 682 

increased rainfall, latent heat flux and longwave warming in the atmospheric column are 683 

important. In the equatorial regions of GoG and CAfrica, where humidity is climatologically 684 

the highest, Twbmax heatwaves are driven by a mixture of high temperature and humidity, with 685 

decreased cloud and increased shortwave warming. 686 
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 687 

Figure 14 Anomalies relative to climatology of key ERA5 variables by sub-region during 688 

present day ERA5 Twbmax heatwaves. (a) near-surface daily mean dry bulb temperature, (b) 689 

near-surface daily mean specific humidity, (c) outgoing longwave radiation, (d) surface net 690 

shortwave radiation, longwave radiation, sensible heat flux, latent heat flux and the sum of 691 

the radiative and turbulent terms, (e) 850 hPa moisture advection, (f) 850 hPa temperature 692 

advection. All variables are averaged over the first 3 days of each heatwave. All variables are 693 

presented as anomalies from the climatological annual cycle (see Section 2.5), apart from qadv 694 

and Tqdv, which for ease of interpretation, are the absolute values. The data for ERA5 are for 695 

heatwaves during the period 2001-2019 to align with the availability of the GPM rainfall data 696 

plotted in Figure 13. The error bars represent the standard error. 697 
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3.4.4 Future change in heatwave drivers 698 

Now we examine the future change in Twbmax heatwave drivers in P25 and CP4 in order to 699 

understand why CP4 simulates a larger future change in Twbmax heatwaves over almost all 700 

parts of Africa. We examine two regions: the Sahel, a region outside of the equatorial belt, 701 

where CP4 simulates a much larger future change in heatwave intensity and frequency than 702 

P25 (Figure 15) and CAfrica, a region within the equatorial belt (i.e. within the future change 703 

‘hotspot’), where the simulated future change in P25 and CP4 is more similar (Figure 16). Plots 704 

of the other regions are shown in Figures S3-5, where GoG behaves broadly like CAfrica and 705 

the Sahara, SAfrica and EAfrica behave broadly like the Sahel. In Figures 15 and 16, the future 706 

Twbmax heatwaves are diagnosed using a future climate (rather than present day) baseline (see 707 

Section 2.3) and the anomalies are relative to present day climatology. 708 

In the Sahel, the dry bulb temperature during Twbmax heatwaves relative to present day 709 

climatology increases by 6.3°C and 5.0°C  in P25 and CP4 respectively under climate change 710 

(Figure 15a). The specific humidity anomaly also increases in both models but to a larger 711 

extent in CP4 (9.3 g/kg in P25 compared to 12.6 g/kg in CP4. Figure 15b). Cloud during Twbmax 712 

heatwaves decreases slightly in the future in both P25 and CP4, i.e. the heatwaves occur over 713 

slightly less cloudy skies (Figure 15c). The main difference between P25 and CP4 is the 714 

increase in LWnet warming and the increase in latent heat flux (Figure 15d). The future increase 715 

in LWnet warming is 9.2 Wm-2 in P25 and 21.2 Wm-2 in CP4 and the future increase in latent 716 

heat flux is 6.1 Wm-2 in P25 and 28.8 Wm-2 in CP4, both of these increases are much larger in 717 

CP4 than P25. For the present day anomalies, P25 is generally in better agreement with ERA5 718 

than CP4. However, given ERA5 is also produced from a model with parameterised 719 

convection, in a region with limited in-situ observations, it is not possible to determine 720 

whether P25 or CP4 is a better representation of reality. 721 

In CAfrica, the future increases in the dry bulb temperature and specific humidity anomalies 722 

are similar in P25 and CP4 and are of the order +5-6°C and +7-8 g/kg respectively (Figure 723 

16a,b). Cloud cover becomes even less prevalent during Twbmax heatwaves in the future, i.e. 724 

the heatwaves occur over clearer skies, and this change is larger in P25 (+10.9 Wm-2) than CP4 725 

(+5.68 Wm-2). The P25-CP4 difference in the future change in the anomalies in Figure 16d is 726 

much smaller in CAfrica than the Sahel. For example the future change in LWnet anomaly is 727 

+9.2 Wm-2 and +10.4 Wm-2 for P25 and CP4 respectively in CAfrica, compared to +9.1 Wm-2 728 
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and +21.1 Wm-2 in the Sahel. This is also the case for the latent heat flux, where the values in 729 

CAfrica are +8.1 and +8.2 Wm-2 for P25 and CP4 respectively, compared to +6.1 and +28.8 730 

Wm-2 in the Sahel. 731 

 732 

Figure 15 Mean anomalies of key variables averaged over the first 3 days of each Twbmax 733 

heatwave over the Sahel, relative to a representative mean annual cycle (see Section 2.5) for 734 

ERA5 and the four climate model simulations. The bars for P25FUT and CP4FUT represent 735 

heatwaves diagnosed using the future climate baseline (see Section 2.3) and are anomalies 736 

from the present day annual cycle. The numbers under the P25 and CP4 present day/future 737 

climate bar pairs show the future change in the anomaly of each variable. For example, in (a) 738 

the future change in the dry bulb temperature anomaly is +6.3°C in P25 and +5.03°C in CP4. 739 

The error bars represent the standard error. 740 
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 741 

Figure 16 Same as Figure 15 but for CAfrica. 742 

 743 

4 Discussion and conclusions 744 

The present day and future wet and dry bulb heatwaves are assessed in 10 year convective-745 

scale (CP4, 4.5km) and parameterised convection (P25, 25km) simulations over the entire 746 

African continent. Compared to reanalysis, CP4 better reproduces the intensity and frequency 747 

of wet bulb heatwaves (and their spatial distribution) than P25. For dry bulb heatwaves, the 748 

difference between the two climate model simulations is much smaller, with both in good 749 

agreement with reanalysis and observations.  750 
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Both CP4 and P25 show large increases in the intensity, duration and frequency of dry (Tmax) 751 

and wet bulb (Twbmax) heatwaves by 2100 under RCP8.5. Present day conditions that occur on 752 

3 to 6 heatwave days per year are expected to be normal by 2100, occurring on 150-180 days 753 

per year. Huge future increases such as this are consistent with previous global and regional 754 

studies (Coffel et al. 2017; Mora et al. 2017; Russo et al. 2017).  755 

P25 and CP4 simulate similar future changes in Tmax heatwaves, however, the future change 756 

in Twbmax heatwaves is larger in CP4 than P25: future changes in intensity are +3.67 compared 757 

to +2.35 and future changes in frequency are +178 days/yr compared to +148 days/yr. The 758 

difference in the future change between the two model simulations occurs despite very 759 

similar future increases in the mean specific humidity and dry bulb temperature. Both CP4 760 

and P25 have a cold and dry bias in their mean climate, which is common for climate models 761 

in the tropics (Zhao et al. 2015). These biases in the mean climate will cause absolute values 762 

of wet bulb temperature to be biased too low, which is not an issue for the percentile-based 763 

heatwave metric used in this study, but is an issue for measures of humid heatwaves that use 764 

absolute thresholds, such as the survivability threshold of 35°C in wet bulb temperature, 765 

where sweating becomes ineffective (Sherwood; Huber 2010). Bias correction may not be 766 

possible due to the lack of routine humidity observations over Africa. 767 

This study uses reanalysis to document the differences in the present day drivers of Tmax and 768 

Twbmax heatwaves over the entire African continent. The timing of Tmax and Twbmax heatwave 769 

events within the annual cycle is different. Tmax heatwaves occur in the warm and dry pre-770 

monsoon months, such as March-May in the Sahel, consistent with previous literature 771 

(Barbier et al. 2018; Fontaine et al. 2013; Guigma et al. 2020), whereas Twbmax heatwaves tend 772 

to occur at the start and/or during the rainy season (July-Sept in the Sahel), when 773 

temperatures remain reasonably high but humidity increases.  774 

African Tmax heatwaves are associated with low rainfall (only 2.5% of Tmax heatwaves 775 

commence on wet days), decreased humidity and cloud, higher shortwave surface warming, 776 

and a high sensible heat flux. This is in broad agreement with Bouniol et al. (2021) and Hong 777 

et al. (2018), who both found similar drivers from observations for Tmax heatwaves over the 778 

Sahel and Korean Peninsula respectively. In contrast, African Twbmax heatwaves are associated 779 

with much larger humidity anomalies than dry bulb temperature anomalies. They are 780 

associated with rainfall, increased cloud and humidity, increased evaporation and increased 781 



41 
 

longwave warming within the atmospheric column i.e. the greenhouse warming effect. In 782 

ERA5, 32% of Twbmax heatwaves commence on wet days, compared to wet days occurring 23% 783 

of the time in a weighted climatology. Through the process of evaporation, soil moisture could 784 

be a key driver of African humid heatwaves during the wet season and should be a focus of 785 

future research. In a pan-African sense, moisture and temperature advection appear to play 786 

only a limited role in both types of heatwaves.  787 

The Twbmax heatwave drivers documented here, which are associated with moist processes, 788 

are similar to those diagnosed by Bouniol et al. (2021) for daily minimum dry bulb 789 

temperature (Tmin) heatwaves. Given both Tmin and Twbmax heatwaves are associated with 790 

increases in humidity, it is possible that the differences between P25 and CP4 for Tmin 791 

heatwaves would be the similar to those documented here for Twbmax heatwaves. Bouniol et 792 

al. (2021) also found reduced and increased aerosol load during Tmax and Tmin heatwaves 793 

respectively. Dust and aerosol are not considered in this study, but their impact on Twbmax 794 

heatwaves should be explored in future work. 795 

Both P25 and CP4 simulate a hot spot of large future change in Twbmax heatwaves over the 796 

equatorial regions of Africa, consistent with previous research on humid heatwaves (Coffel et 797 

al. 2017; Mora et al. 2017). This hotspot is co-located with a large future increase in mean 798 

specific humidity over the equator in both models. This study, for the first time, compares the 799 

drivers of present day Twbmax heatwaves over different regions of Africa. Outside the 800 

equatorial belt, the drivers of Twbmax heatwaves are similar to the pan-African mean described 801 

above. The equatorial belt is climatologically moister and experiences higher rainfall than 802 

elsewhere. In contrast to elsewhere, Twbmax heatwaves are driven by both temperature and 803 

humidity anomalies (rather than predominantly by humidity). The heatwaves occur under 804 

increased shortwave surface heating at the same time as increased evaporation from rainfall. 805 

Large regional variations in the drivers of African humid heatwaves (relative to the more 806 

consistent drivers of Tmax heatwaves) is consistent with the findings of Raymond et al. (2021) 807 

who studies a number of different regions around the world.     808 

The results from this study highlight the potential for an increase in co-occurring or 809 

consecutive events (“compound hazards”) of African heatwaves, heavy rainfall and flooding, 810 

as has been observed in other regions such as China and the USA (Liao et al. 2021; 811 

Raghavendra et al. 2019; You; Wang 2021). Both P25 and CP4 simulate future increases in the 812 
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percentage of Twbmax heatwaves that occur on days with >10 mm daily rainfall accumulations. 813 

In CP4 this increase extends to days with >50 mm daily rainfall accumulations (Table S1). 814 

Humid heat events occurring at the same time as heavy rainfall and flooding could potentially 815 

overwhelm road, hospital and power infrastructure and lead to a higher number of fatalities 816 

and economic damage than if these events occurred in isolation (Zhang; Villarini 2020).  817 

Twbmax heatwaves are driven by moist processes. The fundamental difference between CP4 818 

and P25 model configurations is the representation of convection, so the reason for the larger 819 

future change in humid heatwaves in CP4 must originate from its representation of moist 820 

processes. CP4 simulates larger anomalies than P25 in almost all the key Twbmax heatwave 821 

drivers (temperature, humidity, cloud, rainfall, radiation, turbulent fluxes) in the future 822 

compared to the present day. This is true in all the sub regions apart from equatorial regions 823 

of Central Africa and the Gulf of Guinea, where the difference in the future change in Twbmax 824 

heatwaves in P25 and CP4 is much smaller. Previous studies show that convective-scale 825 

climate models are better able to represent extremes and respond realistically to 826 

environmental controls, giving a greater intensification of rainfall under climate change (Ban 827 

et al. 2020; Birch et al. 2014a; Chan et al. 2016; Finney et al. 2020; Finney et al. 2019; 828 

Fitzpatrick et al. 2020b; Jackson et al. 2020; Prein et al. 2015).  829 

Climate models with parameterised convection, such as those used in the Coupled Model 830 

Intercomparison Project (CMIP), have similar issues with moist processes as P25 (Fiedler et al. 831 

2020), so they may also underestimate the future change in humid heatwaves. This heightens 832 

the need for mitigation and adaptation strategies and also indicates that, if anything, there is 833 

even less time available to implement such changes to avoid catastrophic future heat 834 

conditions than previously thought. 835 

The analysis in this study has highlighted that it is critical to account for the fact that the mean 836 

diurnal cycle of humidity is out of phase with the mean diurnal cycle of dry bulb temperature: 837 

specific humidity peaks overnight but dry bulb temperature peaks during the day. Previous 838 

studies using CMIP5 models (Coffel et al. 2017; Russo et al. 2017), for example, necessarily 839 

use daily mean specific humidity to convert daily maximum dry bulb temperature to daily 840 

maximum wet bulb temperature, because sub daily diagnostics are generally unavailable. 841 

Analysis in this study shows the values of daily maximum wet bulb temperature and the 842 

subsequent heatwave diagnostics that are computed can be very sensitive to the choice of 843 
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humidity averaging period. Climate model simulations that are run in the future should, if 844 

practical, output hourly temperature and humidity data, or implement the computation of 845 

heat stress metrics within the model simulation, as recommended by Buzan et al. (2015).  846 
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