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[1] Feedback between soil moisture and precipitation influence
climate variability in semiarid regions. However, serious
concerns exist about the ability of coarse-scale global
atmospheric models to depict one key aspect of the feedback
loop, namely the sensitivity of daytime convection to soil
moisture. Here we compare regional simulations using a single
model, run at different spatial resolutions, and with convective
parameterizations switched on or off against Sahelian
observations. Convection-permitting simulations at 4 and 12
km capture the observed relationships between soil moisture
and convective triggering, emphasizing the importance of
surface-driven mesoscale dynamics. However, with the
inclusion of the convection scheme at 12 km, the behavior of
the model fundamentally alters, switching from negative to
positive feedback. Similar positive feedback is found in 9 out
of 10 Regional Climate Models run at 50 km. These results
raise questions about the accuracy of the feedback in regional
models based on current convective parameterizations.
Citation: Taylor, C. M., C. E. Birch, D. J. Parker, N. Dixon,
F. Guichard, G. Nikulin, and G. M. S. Lister (2013), Modeling soil
moisture-precipitation feedback in the Sahel: Importance of spatial
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6213–6218, doi:10.1002/2013GL058511.

1. Introduction

[2] In many seasons and regions, soil moisture strongly
influences daytime surface fluxes of sensible and latent heat
[Dirmeyer, 2011]. By driving soil moisture variability,
antecedent rainfall can thus affect the thermodynamics and
dynamics of the lower atmosphere, and hence the potential
for future rain [e.g., Eltahir, 1998]. In the climate modeling
community, this feedback between soil moisture and

precipitation is important due to its impact on regional
hydroclimate—for example, a positive feedback is likely to pro-
long and/or intensify drought. The sensitivity of precipitation to
soil moisture variability was assessed for an ensemble of climate
models in a key study [Koster et al., 2004]. They identified
regions of the world (notably the U.S. Great Plains, the Sahel,
and India) where soil moisture impacted rainfall during boreal
summer. They also highlighted a large range of sensitivities
between models, implying uncertainty in the modeling of key
processes. More recently, Taylor et al. [2012, henceforth T12]
used global satellite data to explore this question. Consistent
with other studies [e.g., Koster et al., 2004; Dirmeyer, 2011],
they found the strongest signals in semiarid regions. However,
T12 also showed that at scales of 50–100 km, afternoon rain
is more likely to develop over drier soils rather than wetter soils.
This observed, locally negative feedback contrasted with a
strong positive feedback in the six global models analyzed.
The model bias supports an earlier study [Hohenegger et al.,
2009] which suggested that the feedback sign changed from
positive to negative with a more realistic (i.e., convection-
permitting) representation of deep convection than that
provided by a parameterization. In particular, current convec-
tion schemes, often based on considerations of one-dimensional
convective instability [Arakawa, 2004], tend to respond rapidly
to local daytime increases of low-level moist static energy,
which is typically faster over wetter soils [Eltahir, 1998].
[3] An important mechanism favoring the initiation of rain

over drier soil is the development of mesoscale circulations
driven by soil moisture heterogeneity [Pielke, 2001]. These
circulations increase convergence in regions of strong
gradients in sensible heat flux [Taylor et al., 2007].
Observational analysis [Taylor et al., 2011, henceforth
T11] from the Sahel has confirmed the climatological impor-
tance of this mechanism. The effect of spatial variability in
the Sahel dominates over one-dimensional considerations
[Dione et al., 2013] in determining the soil moisture impact
on convective initiation, though other feedback mechanisms
may become more important as Mesoscale Convective
Systems (MCS) mature, [e.g., Taylor and Lebel, 1998;
Gantner and Kalthoff, 2010].
[4] The inability of large-scale models to capture the

observed preference for afternoon rain over drier soil (T12)
raises a critical question: is it inadequate spatial resolution
and/or systematic bias in convective parameterizations which
is responsible? This paper addresses that question. It provides
a novel assessment of how models of different spatial
resolutions represent soil moisture-precipitation feedback
and compares their behavior to observations. We focus on
the Sahel, a region with strong, relatively well understood,
and observed feedback behavior. First, we use a convec-
tion-permitting simulation, which can represent separate
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cumulonimbus updraughts without necessarily resolving
their detailed turbulent structure, to explore the underlying
mechanisms responsible for soil moisture controls on
daytime convective initiation, and show that this simulation
is consistent with the structure of the observed feedback.
We then examine how this same model simulates the soil
moisture-precipitation feedback when run at coarser resolu-
tion, with the convective parameterization either switched on
or off. We quantify how the different configurations influence
rainfall persistence and dry-spell return times, and compare
the results with simple diagnostics from 10 Regional Climate
Model (RCM) simulations.

2. Model Simulations

[5] We examine a set of 40 day simulations using the UK
Met Office Unified Model (MetUM) run over a domain of
4440 × 3104 km (Figure 1). These include two simulations
where the convective parameterization of Gregory and
Rowntree [1990] is employed, using 12 and 40 km horizontal
grid spacing (“12P” and “40P”), and two further explicit-
convection simulations, where the convection scheme is
switched off, at 4 and 12 km grid spacing (“4E” and
“12E”). These simulations have previously been used to
understand the role of convection in the diurnal cycle of the
West African Monsoon [Marsham et al., 2013] and the
sensitivity of the diurnal cycle of rainfall to the representation
of convection [Pearson et al., 2013]. The latter study
illustrated the substantially improved diurnal phase of rain-
fall in 4E and 12E compared to 12P. While parameterized
versions of MetUM, in common with many climate models,
simulate a strong rainfall peak around midday, the explicit
runs capture the observed midday minimum and sharp rise
during the afternoon as new convective systems initiate.
[6] The model configurations are described in detail by

Pearson et al. [2013] and are only summarized here.
The MetUM has a semi-Lagrangian, semi-implicit and
nonhydrostatic formulation, and a terrain-following coordinate
system [Davies et al., 2005]. Parameterizations represent

surface processes [Best et al., 2011], the boundary layer [Lock
et al., 2000] and mixed-phase cloud microphysics [Wilson
and Ballard, 1999]. In the explicit models, a 2-D
Smagorinsky-type scheme accounts for subgrid-scale horizontal
mixing. The 40 day simulations are initialized with a European
Centre for Medium-Range Forecasts (ECMWF) analysis at
00Z, 25 July 2006. The 12 km-resolution configurations are
forced at the boundaries by ECMWF analyses every 6 h, and
the 4 km configuration is forced by the 12 km nest every 30
min. During the first 4 days, surface flux patterns exhibit artifi-
cial features introduced by the soil moisture initialization, so this
period is excluded from analysis. We ran an additional set of
thirty six 30 h forecasts with the 12P model to explore sensitiv-
ity to soil moisture (“12Ps”). For each 12Ps simulation, the
model was initialized at 0000 UTC with atmospheric fields
from 12P, but soil moisture from 12E.
[7] We also analyze 10 RCM simulations performed under

the Coordinated Regional Downscaling Experiment
(CORDEX)-Africa initiative [Nikulin et al., 2012]. The
models were run with common lateral boundary conditions
provided by reanalysis data across a much larger domain
using a grid length of approximately 50 km. Three-hourly
rainfall was output by the RCMs and is analyzed here for
the same 36 day period in the seasonal cycle as the MetUM
runs, but extended over 5 years (2004–2008) to produce
more robust statistics.

3. Convective Initiation

[8] To assess whether the MetUM 4E model can capture
the observed spatial relationships between soil moisture and
convective initiation (T11), we examine a large sample of
simulated daytime rain events. We repeat their methodology
developed for observational data (cloud temperatures colder
than �40°C and land surface temperature (LST), both avail-
able every 15 min at spatial resolution ~ 3 km; see T11 for
further details). The same tracking algorithm is applied to
15 min model output. Initiating convective storms between
1000 and 2100 UTC are identified from contiguous rainy
areas exceeding 1000 km2, which are tracked back in time
and space to the appearance of the first rainy grid cell. That
cell defines the initiation point, producing 2504 cases over
36 days (Figure 1). We retain only those 640 initiations
which occurred in the Sahel subdomain, excluding cases
where local topographic height exceeded 500 m (to avoid
additional complexity due to orographic triggering), or the
system took longer than 3 h to reach the areal threshold.
[9] Figure 2 presents the composite mean spatial structure

associated with the initiations, where data from each case
have first been aligned with the large-scale midday flow at
10 m, then centered on the time and location of the first rain.
The evaporative fraction (latent heat flux divided by the sum
of latent and sensible heat fluxes, “EF”; Figure 2b) illustrates
spatial variability in simulated prestorm surface fluxes. It in-
dicates a preference for initiations to occur near the
downwind end of a mesoscale (~ 50 × 30 km) region of lower
(higher) latent (sensible) heat flux. As evident in Figure 2b, the
EF pattern is well correlated with near-surface (0–10 cm) soil
moisture, shown here as a ratio to the soil texture-dependent
critical value, consistent with the model formulation of evapora-
tive conductance from bare soil [Best et al., 2011]. Much of the
rain in the 2 hours following the initiation occurs over the drier
soil. This mesoscale structure is in remarkably good agreement

Figure 1. Topographic height (m) across the 4E domain.
Dots denote convective initiations (see text) and “plus”
symbols indicate initiations within the Sahel subdomain
(12–18°N, 12°W–15°E) analyzed later.
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with the observations (Figure 2a) where daily anomalies in LST
were used as a proxy for soil moisture (lower LST values on av-
erage indicate higher soil moisture) [De Kauwe et al., 2013] and
large cold cloud cover is indicative of rainfall. The similarity be-
tween Figures 2a and 2b demonstrates that the model is well
able to capture the soil moisture influence on convective initia-
tion. Note that the large-scale cross-wind gradient in Figure 2b
(surface getting wetter from left to right) is due to a combination
of the climatological north-south rainfall and vegetation
gradient, and south-westerly monsoon flow. The large-scale
signal has been removed in Figure 2a through the use of
LST anomalies.
[10] The low-level flow preceding the development of deep

convection is shown in Figure 2c, presented as vector anomalies
from the areal mean wind. The mean field indicates
convergence centered over the downwind edge of the dry area
highlighted in Figures 2a and 2b. For a given event, the likeli-
hood of convergence above a threshold of 1.25 × 10�4 s�1 in
this area is more than double the value found 50 km away in
either cross-wind direction. This local convergence signal
emerges around 4 h before initiation of deep convection (not
shown) and is associated with locally enhanced reductions in
convective inhibition. The simulated preinitiation circulation is
consistent with forcing from soil moisture heterogeneity [e.g.,

Gantner and Kalthoff, 2010; Pielke, 2001] and highlights the
importance of patchiness in surface moisture for the develop-
ment of new storms. The same analysis was performed with
diagnostics from 12 km versions of the model. For the explicit
model 12E (Figure 2d), the composite mean structures are
qualitatively similar to the 4 km model. However, there is a
stronger contribution to the 12E composite from cases with soil
moisture-induced convergence, driven by a larger dry soil
feature shifted about 15 km upwind from its location in 4E.
On the other hand for 12P (Figure 2e), there is very little
evidence of mesoscale soil moisture and associated conver-
gence forcing in the composite mean due to the very large
number (6500) of short-lived, disorganized convective events.
These are classified as “initiations” in the sense that a rainy area
develops where there was no overlapping rain in the preceding
hour. We conclude that while 12E can capture the essential
physics inferred from observations, switching on the convective
parameterization at that resolution (12P) has a strong detrimental
effect on the simulated feedback.

4. Feedback of Soil Moisture on Rainfall inModels

[11] We now examine how the surface feedback on con-
vective initiation in the MetUM runs affects the persistence

Figure 2. Composite mean features as a function of distance from initiation point (x axis: cross-wind, y axis: downwind).
(a) Satellite observations [T11] of land surface temperature (shading; °C) anomaly relative to a 21 day running mean and
probability of cloud-top temperatures ≤�60°C (%; contours) in 2 h after initiation. Simulated evaporative fraction EF, for
the 4E (b), 12E (d), 12P (e) and 12Ps (f) simulations is depicted by shading. For 4E (Figure 2b), dotted contour lines
represent the antecedent top level soil moisture (0–10 cm) as a fraction of the soil critical point. Local wind vector anom-
alies (arrows; ms�1) are shown for the four simulations (Figures 2c–2f). The probability of strong convergence (exceeding
1.25 × 10�4 s�1 for the 4 km grid and 4.17 × 10�5 s�1 for the 12 km grid) P(con) (%), is shown by shading in Figure 2c and
solid contours in Figures 2d, 2e, and 2f for 4E, 12E, 12P, and 12Ps, respectively. Simulated rainfall in 2 h following
initiation is shown by dashed contours at 1, 5, 10, 15, 20, and 25 mm in Figures 2b–2f. Data in Figures 2a, 2b, and 2c
are computed on a 5 km grid and in the remaining plots on a 15 km grid. Dynamical fields are averaged between 2.5
and 1.5 h before initiation, evaporative fraction is averaged between 6 and 1 h before initiation.
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of daily rainfall at different spatial scales. To compare the
behavior of the MetUM model with the limited diagnostics
from the CORDEX RCMs, we develop a simple measure
based solely on rainfall. We consider the statistics of rainfall
on sample areas of a given length scale, L. Daily rainfall is
accumulated over 24 h from 0600 UTC, and to minimize
the impact of long-lived nocturnal rainy systems affecting
consecutive totals, days with nonzero rain between 0 and
0600 UTC are excluded from the analysis. To discriminate be-
tween antecedent soil moisture conditions which are predomi-
nantly dry, predominantly wet, or patchy over the L × L
sample area, we adopt a simple antecedent rainfall threshold.
This is set to 3 mm d�1, a value big enough to produce a clear
response in surface fluxes the following day, but small enough
to provide a large sample of cases.When at least 50%of the area
has received rain exceeding this threshold on the previous day,
it is defined as being “wet”, while an area is defined as “dry”
when no grid cells within the L × L area have exceeded that
threshold in the previous 24 h. The remaining cases are
termed “patchy”.

[12] Figure 3 shows the probability of daily rain exceeding
3 mm d�1 for these three classes, when considering a box of
length scales L= 12, 48, and 156 km. For all length scales in
4E, the likelihood of rain is higher over a dry surface than a
wet surface. The patchy class has the highest probability of rain
for box length scales from 36 to 60 km (shown for 48 km;
Figure 3b). Despite the gross simplification of the analysis
(notably the use of a simple rainfall threshold, coarse dryness
classes, and the neglect of rain 2 or 3 days previously), this
length scale dependence is consistent with T11, who
highlighted soil moisture variability on wavelengths of 20–75
km as being important for triggeringMCS. The higher probabil-
ity of rain in the dry rather than wet class is also consistent with
the previous combined analysis of soil moisture and precipita-
tion data which showed a preference for afternoon rain over
locally drier soils on scales of 50–100 km (T12). That finding
is further supported in Figure 3 by analysis of satellite-based
rainfall estimates (CMORPH [Joyce et al., 2004] and
TRMM3B42 [Huffman et al., 2007]). While these precipitation
products do not have sufficient accuracy at their native

Figure 3. Probability of mean daily rain exceeding 3 mm over areas of (a) 12 × 12 km2 (b) 48 × 48 km2 or (c) 156 × 156 km2,
given antecedent rain of at least 3 mm covering: at least 50% of the area (“wet”; right bar), less than 50% of the area (“patchy”;
middle bar), or nowhere within the area (“dry”; left bar). A colored square denotes classes where the probability of rain is signi-
ficantly different from the overall probability at the 95% level, based on resampling. For (Figure 3a) 12 and (Figure 3b) 48 km
analyses, models with approximately matching grid length have no patchy class by definition and are denoted with an “x.”
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resolution of 0.25° [Huffman et al., 2007] to reliably infer soil
moisture variability on wavelengths less than 75 km, they
indicate the lower probability of rain in regions which
experienced extensive rain in the previous 24 h.
[13] The mean probability of rain varies considerably

across the different configurations of the MetUM and the
RCMs. However, in terms of sensitivity to antecedent rainfall
class, distinct types of model behaviors emerge. First, the
sensitivity in 12E is broadly similar to 4E, with significantly
lower rainfall probabilities for the wet class. By contrast, the
parameterized runs (12P and 40P) exhibit the opposite behavior
over wet and dry classes. Furthermore, with the exception of the
Swedish Meteorological and Hydrological Institute (SMHI)
simulation, all the RCMs favor rain over wet surfaces when
considered either at the grid box scale (Figure 3b) or averaged
over nine grid boxes (Figure 3c). Similar behaviors over wet,
dry, and patchy soils are found for all the models using alte-
rnative thresholds of 1 and 5 mm d�1. These results indicate
that, with the exception of one model, state-of-the-art convec-
tive parameterizations produce rain which tends to persist from
one daytime to the next. The reasons for the distinct behavior of
the SMHImodel are unclear but might be linked to that model’s
lack of diurnal phase bias [Nikulin et al., 2012], though the
University of Quebec at Montreal (UQAM) simulation also
depicts a realistic diurnal cycle but unrealistic persistence
in Figure 3.
[14] The additional sensitivity runs 12Ps (i.e., with con-

vective parameterization but with soil moisture initializa-
tion from 12E) allow us to disentangle potential
atmospheric and land surface contributions to the excessive
persistence in 12P. The probability of rain in 12Ps was
calculated according to surface wetness classes from ante-
cedent rain in 12E. The probabilities thus incorporate the
soil moisture contribution to persistence but not the

atmospheric contribution. Again the parameterized model
erroneously shows higher probability of rain over wetter
soil than drier soil for all length scales, though not signifi-
cantly so above L = 132 km. In contrast to 12P, however,
rain in 12Ps is most likely in the patchy class. This effect
results directly from the strong mesoscale soil moisture
heterogeneity created by 12E and subsequently used to
initialize 12Ps (the decorrelation length scale of daily rainfall
in 12E is 97 km, as compared to 264 km in 12P). The impact
of patchier soil moisture on rainfall initiation is evident in
Figure 2f. The composite mean shows convergence in the
hours preceding the initiation in 12Ps, associated with a
weak, local dry soil anomaly superimposed on the large-scale
(cross-wind) gradient, in contrast to 12P (Figure 2e). This
indicates that there are two important contributions to the
biased soil moisture-precipitation feedback associated with
this convective parameterization. First, in common with most
other schemes, the parameterization has a scale-insensitive
preference for rain over wetter soil (T12). Second, when
run at the mesoscale, the unrealistic smoothness of the simu-
lated rainfall tends to reduce spatial variability in surface
fluxes on subsequent days, suppressing the local scale soil
moisture feedback on convective initiation.
[15] Finally, we illustrate the impact of the erroneous soil-

moisture sensitivity of the convective parameterizations on
the statistics of rainfall and dry-spell return times in particu-
lar. During the Sahel wet season, dry periods ~10 days can
have significant deleterious effects on crops [Sultan et al.,
2005]. We create stochastic time series governed by two
models. The “unconditional model” is a binomial system,
in which the probability of rainfall (P) is independent of the
previous day’s rain (and hence surface state), and is given
simply by the number of rain-days divided by the total
number of days available. A second “conditional model” is
developed, based on a Markov chain with five states,
corresponding to possible combinations of mean rainfall
(>3mm or< 3mm) and rainfall distribution (dry, patchy,
and wet as defined above), again taking probabilities from
the set of observations and numerical models.
[16] Results of 30,000 day simulations with the statistical

model are shown in Figure 4 for a box length scale ~ 50 km
and indicate a broad spread of unconditional return times
for a 10 day dry spell ranging from 34 to 226 days, depending
on the data set. In the conditional model, the implicit
inclusion of soil moisture feedback changes the return times
consistent with the influence of the probabilities of daily rain-
fall persistence for the particular data set (Figure 3). For the
explicit simulations and observations, dry spells become less
frequent (points above the 1:1 line), linked to the negative
feedback, while 9 of the 10 RCMs have more frequent dry
spells. In five of these (labeled in Figure 4), the conditional
return time is less than 80% of the unconditional value.
Note that a strong reduction in conditional return time in this
framework requires both a large difference in P between wet
and dry soils, and a relatively high value of P over wet soil
(Figure 3b), conditions satisfied by these five models. The
impact of patchy soil moisture initialization is evident in
the contrasting dry spell time scales of 12P and 12Ps. For
12P, 10 day dry spells are ~40% more likely than predicted
by the unconditional model, while 12Ps has a modest
increase in return time in the conditional model. Note that
qualitatively similar results are found at other length scales
and thresholds.

Figure 4. Return times of 10 day dry spells for different
data sets analyzed over an area ~2500 km2, computed using
a simple binomial probability model for daily rainfall. The
unconditional (conditional) return time calculations assume
rainfall is independent of (dependent on) antecedent rainfall.
Solid triangles: explicit MetUM simulations, solid squares:
parameterized MetUM simulations, open circles: RCM
simulations, solid circles: satellite-based observations.
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5. Summary

[17] This study has shown that a convection-permitting
simulation at 4 km can produce spatial relationships between
soil moisture and convective triggering similar to those in-
ferred from observational proxy data. The results confirm the
importance of the surface-driven circulations in generating
convergence and reducing convective inhibition in the hours
preceding initiation. Additional 12 km simulations provided a
means to test the sensitivity of the feedback to the convective
parameterization. We found that switching on the convection
scheme fundamentally changed the soil moisture coupling in
the model. At the daily time scale, the explicit (parameterized)
simulations show suppressed (enhanced) rainfall probabilities
over wet soil, indicative of a negative (positive) feedback at
scales of 12–156 km, and making agriculturally important dry
spells less (more) likely. The erroneous tendency for a positive
feedback inmodels with parameterized convection is also found
in 9 out of 10 RCM simulations at 50 km resolution. These
findings support the suggestion made by T12 that convective
parameterizations may be overly sensitive to evapotranspira-
tion. In the 12 km parameterized run (12P), convective initiation
occurs too early in the day, linked to rapid boundary layer
humidification. Moreover, rainfall in this configuration tends
to be unrealistically smeared out in space, suppressing soil
moisture-induced circulations on subsequent days. To capture
the essential mesoscale dynamics of the negative feedback,
spatial resolution is clearly important but evidently not sufficient
in this model. Given their poor depiction of the diurnal cycle
[Nikulin et al., 2012], similar biased feedback in the RCMs
maywell originate, at least in part, from their respective convec-
tive parameterizations. Without additional higher-resolution
RCM simulations, we can only speculate on the relative
importance of resolution and convective parameterization for
these particular models.
[18] Seasonal and multiannual convection-permitting

simulations at the regional and even global scale are
becoming technically possible [Dirmeyer et al., 2012], and
these hold promise for better understanding of soil moisture
and vegetation impacts on rainfall [Hohenegger et al.,
2009]. However, these results indicate that urgent attention
is needed to address the shortcomings of convective parame-
terizations in coarser resolution integrations as these will
remain key components of models used for global climate
projection for many years to come.
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