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Dislocations influence many properties of crystalline solids, including plastic deformation, growth and
dissolution, diffusion and the formation of polytypes. Some of these processes can be described using continuum
methods but this approach fails when a description of the structure of the core is required. To progress in these
types of problems, an atomic scale model is essential. So far, atomic scale modelling of the cores of dislocations
has been limited to systems with rather simple crystal structures. In this article, we describe modifications to
current methodology, which have been used for strongly ionic materials with simple structures. These
modifications permit the study of dislocation cores in more structurally complex materials.

Introduction

For more than three decades, computer simulation methods
have been used to either complement experiment, or to over-
come experimental limitations in the study of the atomic-scale
detail of line defect cores in crystalline solids. However, these
studies have so far been limited to crystals with very simple
structures; namely alkali halides and binary oxides with the rock
salt structure, various metals and some semi-conductors. In this
article we describe developments that enable one to study the
cores of screw and edge dislocations in much more complex
ionic and semi-ionic materials. The ability to model the fine
structure of dislocation cores in these materials should open up
diverse new avenues of research. For example the plastic
deformation of crystalline solids is often controlled by the glide
and climb of edge dislocations,2,3 two processes which are
directly controlled by the structure of the dislocation core.
Crystal growth is often enhanced by the emergence of screw
dislocations at the crystal surface; a process that results in the
formation of characteristic growth spirals and, in some materi-
als, can lead to interesting long period polytypism.4 The pre-
sence of line defects in crystals can also open pathways for the
rapid diffusion of point defects—with consequences for plasti-
city.5 One of most visually striking consequences of dislocation
mediated growth is that the external crystal morphology or
habit can be dramatically affected. For example, natural dia-
monds are typically bipyramidal but under conditions of low
supersaturation, where spiral growth dominates, cubic forms are
seen.6 A more challenging technological problem in crystal
engineering is controlling the morphology of pharmaceuticals,
where morphology is a patentable property. Evidently, an

extensive study into the structure and dynamical behaviour of
this class of defects is required for a variety of materials.
The major problem associated with simulating dislocations

is that all of the atoms in the crystal containing the dislocation
are significantly displaced from their location in the perfect
crystal by the dislocation, and the strain energy associated with
the dislocation decays only logarithmically with distance from
the dislocation line.3 The modelling techniques used to study
point defects and surfaces, where the atomic structure at long
range from the defect is only slightly perturbed from or is taken
to be identical to the structure of the perfect crystal, are
therefore not immediately available. There are two approaches
to overcome this problem; the first utilises a similar method to
that employed to study point defects or surfaces, where an
atomistic model of the defect is embedded into a more approx-
imate model of the crystal far away from the defect. The second
approach is to impose an artificial periodicity on the simulation
model by placing a number of dislocations within a simulation
supercell. This makes it possible to perform the calculation
using any computer code designed to model perfect crystals
(using periodic boundary conditions) at the atomic scale at the
expense of having to deal with dislocation–dislocation interac-
tions. (Such an approach is particularly useful if density
functional theory with a plane-wave rather than local orbital
basis set is to be used.)
In order to use periodic simulation cells, special cell geome-

tries must be constructed, in which the net force on the core of
the dislocation from its periodic images is cancelled.7,8 This
approach allows for the use of standard plane-wave codes for
the simulation of dislocations in metals, such as molybdenum
and tantalum,9 and in semiconductors where the suppression
of dislocations is vital for computer chip manufacture. Studies
of the structure and electronic properties of dislocations in
semiconductors include work on edge7,10 and screw8 disloca-
tions in silicon, studies of an extended defect structure in
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layered Si/Ge crystals,11 and the incorporation of hydrogen12

and other impurities13 at edge dislocations. Comparisons of the
structure of dislocations in silicon and carbon (diamond) have
also been made.12,14 A limitation of using periodic boundary
conditions is that the energy of the simulation cell with respect
to a reference ideal crystal includes terms for dislocation–
dislocation interactions analogous to defect–defect interactions
found in supercell studies of point defects.15 While these can be
calculated and corrected for,8 it is not at all clear that this
technique is tenable when applied to ionic systems. This is
because in addition to the elastic interactions, there will
inevitably be electrostatic interactions between dislocation
cores, which are expected to develop dipoles and higher multi-
poles due to the rearrangement of their ions. In addition, point
defects, jogs and kinks on the dislocation line can carry charge
and thus interact over larger distances.

Some of the earliest work modelling dislocations, dating
from the early 1970’s, was performed on metals and utilised the
‘‘embedded’’ approach. An example is the work on a-iron16–18

which also provided a convenient test bed for new methodol-
ogies. These studies used a similar approach to that described
in this article, with a straight dislocation in a simulation cell
with 1-D periodicity and a two-region approach to the calcula-
tion of dislocation energy. More recently, advances in intera-
tomic potentials for metallic systems coupled with new flexible
boundary conditions (see below) have led to work on techno-
logically important metals. These include studies of disloca-
tions in tantalum,19 iron,20 aluminium21,22 and molybdenum.22

Many of the recent atomic simulations of dislocations in metals
have been focused on linking an atomic scale model of the
dislocation core with a ‘‘bottom up’’ mesoscopic description of
plasticity and strength.23 Pertinent examples are the simulation
of cross slip in copper24 and recent simulations of very large
systems of iron,25 which suggest a new picture of plasticity
controlled by the cross slip of screw dislocations.

At the time of the earliest studies in the 1970’s interatomic
potential models for metals were poorly developed. In contrast,
potential models for simple ionic materials were well developed
and generally reliable. Much of the early work was therefore
performed on this class of materials.26,27 Of particular note is
the work undertaken by Puls and co-workers who developed
the PDINT code for the simulation of dislocations in cubic
ionic materials. Concentrating on MgO as a model system this
group first used a simple shell model with rigid boundary
conditions to calculate the Peierls energy for the glide of the
(a/2)[110] edge dislocation.26,28 A breathing shell model was
then used with the Flex-II boundary conditions to recalculate
the geometry of the dislocation core29 and to re-evaluate the
Peierls energy barrier.30 The code was then developed further
in order to model point defect–line defect interactions, again in
MgO.31 Further work involved comparisons between the be-
haviour of dislocations in MgO, NaCl and NiO.32 Compared
to studies of metals and semiconductors, recent interest in ionic
systems has been rather limited33 with the notable exception of
Watson and co-workers.34–36 This group used the METADISE
code34 to study screw dislocations in MgO35 and the effect of
these dislocations on the MgO [100] surface.36 The work of
Sayle is also worth highlighting,37 in this study one oxide is
‘‘deposited’’ on to the surface of another on the computer and,
in some cases, edge dislocations are seen to form spontaneously
in order to relieve strain caused by mismatch in the lattice
parameters of the two materials.

Despite this large body of work, there appears to have been
no attempt to model dislocations in structurally complex low
symmetry materials, with many ions in the crystal basis. This is
perhaps surprising given the importance that dislocations must
play in the behaviour of these materials and the regular applica-
tion of computational models to understand the point defect
and surface properties of complex systems. The major problems
to be overcome are that (1) the systems are generally of low

symmetry and so anisotropic elasticity must be used and (2) any
arbitrary simulation cell with 1-D periodicity is likely to have a
net charge or macroscopic dipole across it. A third issue relates
to the method of calculating the Coulomb contribution to the
lattice energy, the atomistic model of the dislocation is typically
sizeable (B5 nm) and sophisticated charge summation schemes
are necessary to evaluate the electrostatic energy with accuracy
in one dimension, which adds both complexity and computa-
tional expense to the calculation.38,39 In the following sections of
this paper, we outline a methodology to address these issues and
discuss the analysis of the structure of dislocation cores. The
advances described permit the modelling of dislocations in
complex materials that, thus far, have not been amenable to
study. We examine some of the possibilities offered by this
approach in a companion paper where the structures of the
cores of screw dislocations in crystalline materials ranging from
ceramics to a pharmaceutical are described.

Methodology

We base our methodology on the many earlier studies utilising
1D periodicity, reviewed in the introduction. The task is to find
the structure of the core of edge and screw dislocations, and the
energy cost associated with introducing them into an otherwise
perfect ionic crystal. In general, this problem is complicated by
the fact that dislocations can be curved (i.e. the dislocation line
is not straight), they may bifurcate, they may be moving and
their Burgers vector can vary with position along the disloca-
tion line. The dislocation model adopted here simplifies this
situation by constraining the dislocation line to be infinite,
straight and stationary with a constant Burgers vector. This
allows the dislocation to be modelled in a cell that is periodic in
one dimension (along the dislocation line). Perpendicular to
the dislocation line the modelled crystal is considered infinite
and non-periodic. However, by considering the part of the
crystal a long distance from the dislocation line to be under
relatively small strain and using methods appropriate to the
description of an elastic continuum, a two region approach to
the calculation of dislocation formation energy can be con-
structed. The structure of the core can then be found with a
relatively small number of atoms in the simulation cell. Of
course, this situation is a simplification of reality where dis-
locations must form a closed loop, emanate from another
lattice defect or terminate at the edge of the crystal.
The methodology is described in detail below; first the

methods used to set up the simulation cell for edge and screw
dislocations are described, this is followed by details of the
actual simulation (which amounts to an energy minimisation
problem, in this case performed using the latest revision of the
GULP code40). Finally, techniques used to analyse the proper-
ties of the resulting defect structure are considered.
Our emphasis in this publication is to consider the problems

associated with studies of dislocations in complex ionic materi-
als. We therefore only consider the simple case of fixed or rigid
boundary conditions to represent the crystal away from the
core within the simulation. More sophisticated approaches,
such as Flex-S,17 Flex-I,18 Flex-II16,41 or the more modern
domain decomposed approach of Rao et al.,20 could be used,
but we reserve their implementation in the ionic case for future
study. The approximations inherent in the use of rigid bound-
ary conditions are described below.

The simulation cell

The first task is to construct a correctly orientated atomistic
simulation cell of the appropriate dimensions containing a dis-
location. The cell is chosen to have a circular cross section
approximately centred on the origin of the dislocation. The
convention used through out this work is for the cell to be
periodic along the Cartesian z-axis and non-periodic along on the
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other two orthogonal axes (x and y) where it is to be embedded
into an elastic model of the infinite crystal. The dislocation line
therefore lies along z. Screw dislocations must then have a
Burgers vector parallel to z and edge dislocations have a Burgers
vector in the xy-plane. Dislocations with a general mixed char-
acter therefore have components of the Burgers vector in all three
directions. The exact orientation of the cell with respect to the cell
parameters is chosen to simplify the introduction of the disloca-
tion as described below.42,43 In cases where the crystal, as
described by the chosen set of interatomic potentials, is elastically
anisotropic, it is necessary to calculate the elastic compliance
tensor (slm) for the bulk material expressed in the Cartesian frame
of reference described above.

An additional complication when modelling ionic systems is
that the cell must be charge neutral to ensure that the total
energy is finite. It is also desirable to minimise the total dipole
perpendicular to the dislocation line (the dipole component
along the periodic repeat is undefined as its value is dependent
on an arbitrary choice of origin). Any dipole would be screened
out in real crystals (e.g. by point defects, other dislocations or
surface effects) and a large dipole across the simulation cell may
result in artificial forces on the atoms in the model. We have
developed several approaches that assist in achieving a charge
neutral, low dipole cell and three of these are illustrated in the
examples given in the accompanying publication. Briefly, if
the crystal consists of strings of atoms with no net charge
parallel to the dislocation line (as in MgO where � � �Mg–O–
Mg–O� � � strings can be found) then any cut will achieve charge
neutrality and one only has to place the centre of the circular cell
on a rotation axis to minimise the dipole. In the general case,
neutral strings do not occur and one solution is to build the cell
out of whole molecules. This results in a neutral cell and, if a
rotation centre is selected for the cell origin and the dipole on the
molecules is small, then the total dipole across the cell will be
small. Using this method, the profile of the cell is no longer
circular, but instead it has somewhat ragged edges. The third
approach is to build the cell out of ‘‘charge neutral units’’ in a
manner exactly analogous in one dimension to the zero dimen-
sional approach used by Braithwaite et al.44 in their study of
point defects in forsterite. This method is explored in more detail
in the accompanying publication and we have previously used it
for our model of screw dislocations in zeolite A.45

Once the bulk-like cell is generated, the second step is to
introduce a dislocation into it. In order to achieve this, it is
temporarily assumed that the crystal is an anisotropic, homo-
geneous, infinite, linear elastic body with elastic constants
previously determined using the atomistic model. The atoms
are considered to be embedded within this elastic body; they
will move with it and have no effect on its behaviour. As the
dislocation is introduced into this body, the atoms are passively
carried from their location in the un-dislocated bulk cell into
their location in the dislocated crystal and this new configura-
tion is used as the starting point for an atomic simulation of the
core. The atomic simulation, which is performed after the
dislocation is introduced, lifts the assumption of linear elasti-
city and corrects the inaccuracies introduced by such an
approximation. Thus, the problem of introducing the disloca-
tion is thus reduced to introducing a dislocation into an elastic
body and keeping track of where particular pieces of the body
(representing the atoms) move as the dislocation is introduced.

Introducing the dislocation into the elastic body corresponds
to the following process:3,4 (1) a small amount of material from
the centre of the cell is removed, (2) a cut is made from the edge
of the cell to the hole in the centre, (3) the two sides of the cut are
displaced by the Burgers vector such that the two sides remain
parallel, (4) the cut is cemented together and the system is
allowed to reach elastic equilibrium. This procedure is shown
diagrammatically in Fig. 1. When an elastic body undergoes this
process the displacement of any piece of the body is known as its
elastic displacement and, the displacement of all atomic consti-

tuent parts of the body are described by the elastic displacement
field. For an elastic body with low symmetry this field must be
found numerically, however in some cases symmetry permits
analytical solutions for the displacement field (see the Appen-
dix). The displacement field can be viewed as a mathematical
function that maps the location of a point in the bulk cell to the
equivalent point in the dislocated cell as if the ‘‘cut and slip’’
process described above had been performed. In practice, this
field is evaluated for the position of each atom in the bulk like
cell, and the displacement is applied to the atom in question. The
result is the introduction of a dislocation into the cell. It should
be noted that the solution to the linear elastic displacement field
of the dislocation and is only a function of the Burgers vector,
the orientation of the dislocation, and the elastic properties of
the crystal. Consequently, good reproduction of the bulk elastic
constants is a critical prerequisite for a model of a dislocation.
The calculated elastic displacements are exact a large distance
from the core (where the strain is infinitesimal), but are only
approximate close to the core. Subsequent energy minimisation,
with atoms again explicitly considered, corrects the geometry of
the core and its surroundings.

Finding the geometry of the dislocation core

The method described in the previous section allows the
generation of a simulation cell containing a dislocation. How-
ever, all the expressions used to introduce the dislocation given
in the Appendix assume that the displacements of the atoms in
the simulation cell can be described by linear elastic theory (the
hole in Fig. 1 is, in practice, made infinitesimally small). This
results in four causes of error in the location of the atoms in the
starting cell that mean that the starting configuration is not at
an energy minimum. The geometry is corrected by energy
minimisation using an atomistic model and the difference
between the positions of the atoms found by the elastic and
atomistic calculation (i.e. the displacements of the atoms
during the energy minimisation) is termed the core displace-
ment field. This is described below, and its typical form is
illustrated in Fig. 2. The presence of this field arises from the
following four errors in the elastic method used in setting up
the initial simulation geometry:

Fig. 1 Schematic diagram showing the process used to introduce a
screw dislocation into a perfect crystal by Volterra’s procedure. The
diagram shows a screw dislocation but an equivalent process occurs for
an edge dislocation. (a) represents the bulk-like cell generated by
multiplication of the crystal unit cell, in (b) a portion of the crystal is
removed, in (c) a cut is made and in (d) the two surfaces are moved past
each other. In order to introduce an edge dislocation the movement in
(d) would be at right angles to that shown. Volterra’s linear elastic
displacement field maps points in (a) onto the equivalent point in (d) if
the hole in the centre of the crystal is sufficiently large and there is no
traction on its walls.
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1. The displacements are taken to correspond to linear elastic
theory; this is equivalent to assuming that the strains (i.e. the
relative displacement of the atoms to one another) are small.
This assumption is clearly invalid close to the dislocation origin
where the strains can be very large. In a macroscopic sense, these
non-linear terms manifest themselves in a change in the elastic
constants with strain and, in general, they result in patterns of
deformation not expected from a consideration of only the linear
terms. For example, in a non-linear isotropic elastic body with
five independent elastic constants the introduction of a screw
dislocation causes displacement of material outwards, away
from the dislocation origin. This pattern of displacement is
completely absent from the equivalent linear isotropic solution.46

2. The strain of each crystal unit cell around the dislocation is
finite and can be quite large. In general large strains of a unit cell
result in relative displacement of the ions within it (except in cases
where the atoms cannot move and preserve the cell’s symmetry).
If the crystal is made up of covalently bonded molecules one
would expect the bonds within the molecules to be relatively
unstrained while most of the strain of the cell is taken up in
changing the molecules’ separation and orientation. The metho-
dology outlined here results in all atomic separations being
treated in the same way; the strain in the cell is homogeneous.
The approximation introduces a discontinuity between the fixed
and relaxed regions, but tests for finite size effects show that this
error is localised and does not affect the structure of the disloca-
tion core.45 Indeed this discontinuity can be observed in the core
displacement field and is seen to decay quickly (see Fig. 2), as
would be expected for what is effectively an interfacial effect.

3. The structure of the core is, by definition, not known from
elastic theory. The elastic description of the dislocation has a
singularity in energy at r ¼ 0, and the atomic displacements are
discontinuous. The method assumes that the structure of the
core can be found from the starting approximation given by
linear elastic theory.

4. Reconstruction of the atomic structure of the dislocation
core may well be accompanied by a dilation, contraction or
twisting of the core. This in turn applies forces from the core
onto the surrounding crystal, which responds elastically. This
effect is obviously not accounted for in setting up the cell.

In general, several solutions are available to the problem that
linear elasticity is inaccurate close to the dislocation core; if the
structure of the core itself is not a concern, but its effect is, then
non-linear elastic theory can be applied.46 However, if the
structure of the core is of interest, then its constituent atoms
must be explicitly treated. This is a particular problem since the
geometry of the core depends on the position of the atoms
surrounding the core and the position of the atoms around the
core depends in turn on the geometry of the core. There is a
solution to this problem: the position of atoms a long distance
from the core can be found using elastic methods given only a
knowledge of the elastic constants, the direction of the disloca-
tion line and the Burgers vector. If enough atoms can be
simulated such that the non-linear elastic terms (associated with
the large strains near to the core) and the core dependent effect
decays before the edge of the free atomistic region is reached,
then so called fixed boundary conditions can be used. In such a
simulation, a large portion of the crystal around the dislocation
core is relaxed to minimise the energy of the whole cell, while the
atoms near the edge of the simulation cell are held fixed at the
positions determined by linear elasticity. This is the approach
used in the present work. A check that the size of the relaxed
portion of the crystal is large enough to accommodate the non-
linear and core effects is to calculate the energy derivatives on
the innermost atoms that are held fixed during the relaxation. If
these values are small then the free region is large enough. In
cases where insufficient numbers of atoms can be included in the
simulation to meet this condition, then one of the flexible
boundary conditions16–18,20 can be used.
The methodology described so far is quite general and does

not depend on the form of the interatomic potential used.
However, in order to model ionic, or partially ionic, systems
the cell described above must contain charged ions, which
interact via a Coulombic potential. In one dimension the
standard Ewald summation is not available but, in principle,
this is not a problem because in one dimension (in contrast
with the two or three dimensional cases) the Coulomb summa-
tion is absolutely, if slowly, convergent. The slow convergence
makes a simple real space summation inappropriate for these
terms. However, several methods are now available which
make the problem tractable. In this work, the Coulomb
summations of both Saunders et al.39 and of Wolf et al.38 are
used. Both have been implemented in the latest revision to the
GULP code,40 where we have found that the optimal choice of
summation method depends on the size of cell required.
For cells with a smaller radius, the summation of Saunders

et al.,27 originally developed for the simulation of polymers is
preferred. This summation is superior to that used by, for
example, Hoagland et al.27 or Puls and Norgett.26 Firstly,
because the new approach does not require strings of atoms
with a net charge of zero parallel to z, and secondly because
Watson et al.35 report that the new summation exhibited faster
convergence. The key to enhanced convergence lies in applica-
tion of a neutralising background for each atom in the system
and the use of the Euler–MacLaurin summation formula.
Using this approach the Coulomb energy is given by: 40
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1
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Fig. 2 Typical features of the ‘‘core’’ displacement field (the difference
between the displacements calculated using linear elasticity and the
results of the atomistic model) as a function of radius, r. This figure
shows the radial component, dr, for a screw dislocation in zeolite A,
examples for other systems are given in the supplementary information
to the accompanying paper. From the core at r ¼ 0 Å to the edge of the
model at r ¼ 115 Å the following general features are observed: (A)
Large displacements at the core due to rearrangement of the core
structure (caused by error 3). (B) Decaying displacements caused by
non-linear elastic effects and the dissipation of forces generated by the
core rearrangement (caused by errors 1 and 4). (C) Eventual near
constant pattern of displacements due to the rearrangement of atoms in
strained cells (caused by error 2). (D) Region 1–region 2 interface effect
between homogeneously strained region 2 and free atomistic region
(caused by error 2). (E) No movement in region 2.
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where the sums are over all images of N atoms separated by a
distance r and with charge q in each of M unit cells which have
a periodic repeat, a, in the z direction. Components of the
atomic separation is given by x, y and z, and the other variables
are defined by:

u ¼ a M þ 1

2

� �
;

xðM; rijÞ ¼ �
XM
i¼1

Eia
2i�1 @

@u

� �2i�1
ððuþ zÞ2 þ x2 þ y2Þ�1=2;

and Ei are coefficients of an Euler–MacLaurin series, with the
first five terms given by: �0:5

12
; 0:875

720
; �0:96875

30240
; 0:9921875

1209600
; �0:998046875

47900160
.

The accuracy of the total Coulomb energy depends on the
value chosen for M, in practice the energy is evaluated for
increasing values of M until the energy converges to a suitable
accuracy, comparable to that yielded by the Ewald method. In
practice, the sum is found to converge rapidly, with M r 5.

As the cell radius increases, the Saunders summation becomes
increasingly inefficient. A better approach for these large cells is
the real-space Wolf summation.38 This has the advantage of
scaling linearly with number of atoms in the simulation cell.
However, the potential model should be fitted taking account of
the fact that the Wolf summation is to be used (i.e. during fitting
the Coulomb contribution to the energy and energy derivatives
should be evaluated using the Wolf sum). The summation
scheme is based around the concept of ensuring that the sum
of the charges of all ions within a spherical cut-off region of
radius Rcut is equal to zero and that the potential goes smoothly
to zero at the cut-off. This is implemented by placing an image
of every atom within the cut-off sphere on the edge of the sphere
projected through the central atom. Convergence is enhanced by
using a damped form of the potential equivalent to the real
space part of the Ewald sum. The amount of damping is
determined controlled by a convergence parameter, a. In this
form the Coulomb energy is written:

rijoRcut;UCoulomb ¼
1

2

X
i

X
j

qiqj

� erfcðarijÞ
rij

� lim
rij!Rcut

erfcðarijÞ
rij
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�
X
i

q2i
erfcðaRcutÞ

2Rcut
þ a
p1=2

� �

rij � Rcut;UCoulomb ¼0
ð2Þ

where the final term is the subtraction of the self energy of the
smoothing Gaussian.

On a related note, the Madelung potential should be correct
for all the atoms that are allowed to move during the simula-
tion. This can easily be achieved by making the shell of atoms
embedded in the elastic continuum thick enough to achieve
convergence in the dislocation energy. Note that if the summa-
tion of Wolf et al.38 is used this condition can always be met by
setting the shell to be thicker than the real space cut-off radius.

In short, the simulation itself involves taking a cell contain-
ing a dislocation with the atoms near the centre of the cell
positioned according to an elastic approximation. Generally,
this atomic arrangement does not correspond to the equili-
brium geometry of the core and this deficiency is remedied by
fixing the atoms around the edge of the cell (which are correctly
positioned) and minimising the energy of the cell.

Analysis of the dislocation structure

Once the geometry of the dislocation core and surrounding
crystal has been established, it is possible to describe the
dislocation in several ways. In particular, the displacement field

of the dislocation is of relevance. This is defined as the change in
position of the atoms in the relaxed cell compared to those in the
bulk crystal (or the bulk-like 1D cell). This vector field can be
split into two components, the first is the linear elastic displace-
ment field, which is already known; it is analytically determined
before starting the simulation (see the Appendix). The second
component is the deviation of the linear elastic displacement
field from the total displacement field caused by the four
processes outlined above. This part will be termed the core
displacement field (although not all contributions to it are
strictly due to the presence of the core). There are equivalent
stress and strain fields. Also of interest is the actual structure of
the core itself. In some cases the structure is similar to the
structure of the non-defective crystal, but in others significant
deformation and reconstruction is observed.
The total energy of the simulation cell is not a particularly

useful quantity in isolation. This is because this energy depends
on the size of both the free and fixed portions of the simulation
cell as well as on the exact method used to terminate the
simulation cell. In addition, the accuracy of the total energy of
the cell will crucially depend on the ability of any potential
model to describe ‘non-equilibrium’ regions of the potential
energy surface. However, a measure of the thermodynamic
stability of the dislocation is the ‘‘dislocation formation en-
ergy’’, defined as the work done (per unit length of dislocation)
by introducing the dislocation into an otherwise perfect crys-
tal.3 Expressing this is not a simple matter, as this energy does
not converge with the size of the simulation cell (in contrast
with models of point or planar defects). A quantity that can be
expressed is the dislocation energy stored within a certain
radius of the dislocation origin. The basic theory of disloca-
tions splits this energy into two components,3 the first stored
within the dislocation core and the second stored by the elastic
response of the rest of the crystal. As an example, in an
elastically isotropic material the energy stored by a screw
dislocation within a cylinder of radius r centred on the dis-
location line is described by:

EðrÞ ¼ EðcoreÞ þ Gb2

4p
ln

r

r0

� �
: ð3Þ

E(core) is the energy stored within the core which has radius r0,
b is the length of the Burgers vector and G is the shear
modulus. Similar expressions exist for anisotropic crystals
replacing G with another combination of the elastic constants.
This ‘‘energy factor’’, which depends on the symmetry of the
elastic constant tensor (and therefore the point group of the
crystal) in a similar manner to the elastic displacement field,
has been derived for a number of point groups by Steeds.43

The dislocation energy is also the energy difference between
the simulation cell with and without the dislocation, stored
within a given radius and this definition is used to extract
dislocation energies from our models, i.e. E(r) is given by:

E(r) ¼ Ed(r) � Ep(r) (4)

Where Ed(r) and Ep(r) are the energy stored with radius r in the
dislocated and perfect cell respectively. Ed(r) and Ep(r) can be
evaluated for values of r directly for any value of r smaller than
the radius of the model by dividing the simulation cell into two
parts (Fig. 3). Region 1, centred on the origin of the disloca-
tion, is cylindrical with a radius r, region 2 is the rest of the cell.
The total energy of the cell can now be split into four terms:

Etotal ¼ E11 þ E12 þ E21 þ E22, (5)

where E11 is the total interaction energy (including both short
range and Coulomb contributions) between all pairs of ions in
region 1, E12 is the interaction energy between atoms in region
1 and atoms in region 2, E21 is the interaction energy of atoms
in region 2 with atoms in region 1 and is equal to E12, and E22 is
the interaction between pairs of atoms within region 2. Ed(r) is
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then given by:

Ed(r) ¼ E11 þ E12, (6)

and Ep(r) can be found in the same way. This means that many
values of E(r) can be found and these used to fit to eqn. (3) and
the core radius and energy can then be extracted. A further
problem arises if, for any of the selected values of r, region 1
has a net charge (balanced by an equal and opposite charge on
region 2). Such a situation is inevitable in low symmetry
crystals and the solution is to calculate Ep(r) in an alternative
way. Using a parameterised model the lattice energy of the
bulk material is usually defined:

Elattice ¼
X
i

Ui þ
1

2

X
ij

Uij þ ::: ð7Þ

but, as long as the atoms do not move, the total lattice energy
can be redefined as the sum of the binding energies of all the
atoms in the cell:

Elattice ¼
X
i

Ebinding ¼
X
i

Ui þ
1

2
Uij þ :::

� �
ð8Þ

and these energies can be found for each symmetrically distinct
atom in the unit cell. The solution to the charge problem is then
to sum up Ep(r) for all atoms in region 1 of the defective cell
and use this value in eqn. (4).

Summary

We have described an approach to modelling screw and edge
dislocations in structurally complex and diverse materials. The
major developmental advances associated with the approach
described here include (i) the application of anisotropic elastic
theory, (ii) efficient methods of calculating the Coulomb con-
tribution to the total energy and (iii) a charge-neutral group
method of terminating the simulation cell that guarantees
charge neutral cells. The combined use of the elastic and
atomistic methods described here leads to a description of
the core structure of dislocations via a computationally ex-
pedient route. In an accompanying paper, we examine the
cores of screw dislocations in a number of materials ranging
from the ionic, to the semi-ionic and the purely covalent and
demonstrate the utility of the methodology outlined above.

Appendix: The linear elastic displacement field

around a dislocation

In order to set up the dislocation models described in this paper
the linear elastic displacement field must be known. This
appendix gives the equations for the field for screw and edge
dislocations in isotropic and some anisotropic crystals.

Assuming linear elasticity, and neglecting core and surface
effects, the displacement field around a dislocation in an

elastically isotropic material is well known; Volterra provided
a general, analytical solution to the displacement field needed
to introduce the dislocation into an elastically isotropic mate-
rial.4 In the case of a pure screw dislocation, with a Burgers
vector of length b, and in the frame of reference described
above, the expression is straight forward:3

ux ¼uy ¼ 0;

uz ¼
b

2p
arctan

y

x
:

ðA1Þ

Any point (x,y) simply moves parallel to the dislocation line,
such that a 3601 rotation about the line corresponds to a
displacement of 1 Burgers vector in a smooth fashion. In the
case of a pure edge dislocation in an isotropic material the
solution is more complex, it is given by Nabarro4 for the case
of the Burgers vector along x as:

ux ¼
b

4pð1� uÞ
xy

ðx2 þ y2Þ �
b

2p
arctan

x

y
;

uy ¼�
ð1� 2uÞb
8pð1� uÞ ln

x2 þ y2

b2
þ b

4pð1� uÞ
y2

ðx2 þ y2Þ

uz ¼0:

ðA2Þ

where u is Poisson’s ratio.
For eqns (A1) and (A2) to be valid the crystal must be

elastically isotropic with only two independent elastic con-
stants given by:

s11 ¼ s22 ¼ s33;
s12 ¼ s13 ¼ s23;
s44 ¼ s55 ¼ s66 ¼ 2(s11 � s12). (A3)

This means that, for almost all crystals, in order to find the
correct displacement field needed to move an atom from its
position in the perfect crystal into its location in the dislocated
crystal, we must turn to the anisotropic elastic theory.
In the general case, with 21 independent elastic constants,

analytical solutions are not readily available and the displace-
ment field must be found numerically.42 However, several
approaches have been suggested and symmetry simplifies the
problem and several analytical solutions have been pre-
sented.43,47 In the simplest case, where the dislocation is
straight, z lies along a six-, four- or two-fold axis and another
six-, four- or two-fold axis is perpendicular to it (chosen to lay
along x or y) the analytical solutions equivalent to eqns (1) and
(2) are given by Steeds.43 (The presence of mirror planes can
also lead to the same solutions for the anisotropic displacement
field as a mirror plane can have the same effect on the elastic
tensor as a rotation axis. The solution is valid if, using the axes
described herein, the matrix representation of the elastic con-
stant tensor reduces to the form:

c11 c12 c13 0 0 0
c22 c23 0 0 0

c33 0 0 0
c44 0 0

c55 0
c66

or a more symmetrical form. Various combinations of four-
and six-fold axes also have the effect of generating a matrix of
this form.43,48) First, the elastic compliance matrix, slm, is
converted into a reduced form, Slm (eqn. (A4)), in order to
make use of the fact that the dislocation line is straight and
there is no strain parallel to it:

Slm ¼ slm �
s3ls3m

s33
: ðA4Þ

Fig. 3 Cell setup for the evaluation of E(r). The radius of region 1 is
chosen to be equal to r, region 2 must then be sufficiently large to correctly
yield region 1–region 2 interaction energies. This limits the maximum
value of r that can be used to evaluate E(r) for a particular simulation cell.
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The expression for the linear elastic displacement field for a
screw dislocation is then:

ux ¼0;

uy ¼0;

uz ¼
b

2p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S44

S55

� �s
y

x

( )
:

ðA5Þ

This expression reduces to the isotropic case (eqn. (A1)) when
S44 ¼ S55. Otherwise, the effect is to change the pitch of the
screw dislocation with the angle around the dislocation line.

For edge dislocations, the Burgers vector need not lie along
one of the axes of the Cartesian frame of reference because the
frame is chosen according to the symmetry of the crystal. First
the components of the Burger’s vector along x and y (bx and by)
are calculated. Then, defining the anisotropic parameters:

l4 ¼S22

S11
;

2L ¼� 2S12 þ S66

S11
;

ðA6Þ

the displacement field for each component can be found. For
the x component of the Burgers vector, with l4 o L2 (eqn.
(A6)) the expressions for the atomic displacements are:

ux ¼
bx

4p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl2 � LÞ

q
tan y

1� l2 tan2 y

8<
:

9=
;� ðLþ S12=S11Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � l4
p

2
4

� arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðLþ l2Þ

q
tany

1þ l2tan2y

8<
:

9=
;
3
5;

uy ¼
bx

4p
�ðl

2 þ S12=S11Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl2 � LÞ

q ln r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos4yþ l4sin4y� 1

2
Lsin22y

q2
64 ;

þ ðl
2 � S12=S11Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðLþ l2Þ

q ln
cos2y� L�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � l4

p� 	
sin2y

cos2y� Lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � l4

p� 	
sin2y

8<
:

9=
;
3
75;

uz ¼0
ðA7Þ

the y component of the Burger’s vector gives:

ux ¼
by

4pl2
ðl2 þ S12=S11Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðl2 � LÞ
q lnr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos4yþ l4sin4y� 1

2
Lsin22y

q2
64

þ ðl
2 � S12=S11Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðLþ l2Þ

q ln
cos2y� L�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � l4

p� 	
sin2y

cos2y� Lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � l4

p� 	
sin2y

8<
:

9=
;
3
75;

uy ¼
by

4p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl2 � LÞ

q
tany

1� l2tan2y

8<
:

9=
;þ ðLþ S12=S11Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 � l4
p

2
4

� arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðLþ l2Þ

q
tany

1þ l2tan2y

8<
:

9=
;
3
5;

uz ¼0:
ðA8Þ

In the case l4 4 L2, the expressions for the x components are:

ux ¼
bx

4p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl2 � LÞ

q
tan y

1� l2 tan2 y

8<
:

9=
;

2
4

þðLþ S12=S11Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4 � L2

p ln
cos2yþ l2sin2y�

ffiffiffiffiffiffiffiffiffi
Lþl2
2

q
sin2y

cos2yþ l2sin2yþ
ffiffiffiffiffiffiffiffiffi
Lþl2
2

q
sin2y

8><
>:

9>=
>;
3
75;

uy ¼
bx

4p
�ðl

2 þ S12=S11Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl2 � LÞ

q ln r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos4yþ l4sin4y� 1

2
Lsin22y

q2
64

þðl
2 � S12=S11Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðLþ l2Þ

q arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4 � L2

p
cot2y� L

( )375;
uz ¼0;

ðA9Þ

and the y components become:

ux ¼
by

4pl2
�ðl

2 þ S12=S11Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl2 � LÞ

q lnr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos4yþ l4sin4y� 1

2
Lsin22y

q2
64

þðl
2 � S12=S11Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðLþ l2Þ

q arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4 � L2

p
cot2y� L

( )375;

uy ¼
by

4p
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl2 � LÞ

q
tany

1� l2tan2y

8<
:

9=
;

2
4

þðLþ S12=S11Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4 � L2

p ln
cos2yþ l2sin2y�

ffiffiffiffiffiffiffiffiffi
Lþl2
2

q
sin2y

cos2yþ l2sin2yþ
ffiffiffiffiffiffiffiffiffi
Lþl2
2

q
sin2y

8><
>:

9>=
>;
3
75;

uz ¼0:
ðA10Þ

Derivations of eqns. (A5)–(A10) can be found in Steeds.43

Analytical solutions for the displacement fields given by the
anisotropic linear elastic theory are also available for the case
of dislocation lines (1) lying along a three-fold axis with a
perpendicular two-fold axis and (2) the case where the disloca-
tion line is perpendicular to a two-fold axis. For systems of
lower symmetry, numerical approaches are required to derive
the elastic displacements.
Application of the above displacements to the atoms in the

bulk-like cell result in the introduction of a dislocation. The
atoms at a large distance from the dislocation line should be in
the correct position but further calculation, utilising an ato-
mistic model, is required to find the equilibrium structure of the
dislocation core. Care must be taken in applying the elastic
displacements, which must be calculated using the elastic
constants that are generated by potential model, in addition
the trigonometric functions must be used so as not to give
discontinuities in the displacement field for angles of y between
01 and 3601. A. M. W. has developed a library of programs to
enable the introduction of dislocations into model crystals,
which are available upon correspondence.
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