
Python types, modules
and the standard library

Andrew Walker

andrew.walker@bris.ac.uk

for Earth Scientists:
27 & 29 Sept. 2011

mailto:andrew.walker@bris.ac.uk
mailto:andrew.walker@bris.ac.uk

for Earth Scientists:
27 & 29 Sept. 2011

In general, what is a “type”?

for Earth Scientists:
27 & 29 Sept. 2011

In general, what is a “type”?

10000000 00100101
value

\0%
ASCII

32805
u-short

+37
short

storage size (2 bytes)
Meaning

for Earth Scientists:
27 & 29 Sept. 2011

In general, what is a “type”?

Objects are Python’s abstraction for data. All data in a Python program is
represented by objects [...]

Every object has an identity, a type and a value. [...] An object’s type
determines the operations that the object supports (e.g., “does it have a
length?”) and also defines the possible values for objects of that type. The
type() function returns an object’s type (which is an object itself).

Data model, from the Python
Language Reference

http://docs.python.org/library/functions.html#type
http://docs.python.org/library/functions.html#type

for Earth Scientists:
27 & 29 Sept. 2011

Why?
Types allow abstraction: a language without types is a language where the
programmer needs to explicitly convert between binary and whatever it
is that the binary represents. This is present in all type systems.

Types document the program: for static typing the fact that type
declarations exist allows somebody reading the program to know what
you mean.

Safety: a strong type system can (and does) catch programming errors. Try
passing a double precision real into a fortran function expecting two
single precision reals with type checking turned off - then find the bug.

Performance: static typing allows a compiler to make optimisations;
dynamic typing implies a run time overhead in time and memory.

The choice of a type system is a fundamental one
involving trade offs when designing a language

Python is strongly but
dynamically typed

for Earth Scientists:
27 & 29 Sept. 2011

for Earth Scientists:
27 & 29 Sept. 2011

~36 built in types in Python,
but mostly you won’t care

about most of them

• Integer

• Real

• Complex

• String

• List

• Tuple

• Dictionary

• Set

• Frozenset

• File

• None

• Function

for Earth Scientists:
27 & 29 Sept. 2011

Float
Real number like 3.14159, -74.2, 34⨉1097 or 2.0.
Implemented using double in C so precision is
system dependant (see sys.float_info).
Binary operators with integers “widen”.

real = 34E97
pi = 3.14159
r = 22.0
area = pi * r**2

Operations with real numbers

for Earth Scientists:
27 & 29 Sept. 2011

Complex

cplx = 10+17E32j
pi = 3.14159265
e = 2.718281828
i = 1.0j
error = e**(pi*i)-1

Operations with complex numbers

Complex or imaginary number like 7+15i or
-34⨉1097i. Works as two floats (c.imag and
c.real). Integers and floats are widened.

for Earth Scientists:
27 & 29 Sept. 2011

Integer
A positive or negative whole number (1, -6, 432,
etc.) Come in three sizes boolean, short integer
and long integer. Conversion between these is
automatic.

a = 1
b = -7L
c = True
print a + b + c
prints -5

Operations with integers

for Earth Scientists:
27 & 29 Sept. 2011

String

A series of characters. Cannot change a string in
place (immutable).

a = “abc”
b = ‘def’
c = a+b
print c
prints abcdef

String concatenation

a = “abc”
print a[1]
prints b
a[1] = ‘d’
error
a = a[0]+‘d’+a[2]
OK

Basic slicing and immutability

for Earth Scientists:
27 & 29 Sept. 2011

List
Like Matlab’s cell arrays. A sequence of other
types kept in order. Like strings, lists are zero
based. Unlike strings, lists are mutable.

l = [“a”, 10, “abc”, 555.3]
for i in l:
 print i # a, 10, abc, 555.3
print l[2] # abc
l[2] = ‘cde’ # OK
len(l) # 4
l = [] # New empty list

Lists

for Earth Scientists:
27 & 29 Sept. 2011

Tuple
Tuples are immutable lists. Can do “tuple
assignment” - useful for returning the results of
functions

t = (“a”, 10, “abc”, 555.3)
for i in t:
 print i # a, 10, abc, 555.3
print t[2] # abc
t[2] = ‘cde’ # ERROR
len(t) # 4
t = () # New empty tuple
a, b = (‘abc’, 54) # a=‘abc’; b=54

tuples

for Earth Scientists:
27 & 29 Sept. 2011

Set and Frozenset

A
B

Intersection
A & B

Difference
A - B

C

superset
B > C

Union
A|B == A|B|C

for Earth Scientists:
27 & 29 Sept. 2011

Set and Frozenset
Sets and frozensets behave in the same way, but
sets are mutable and frozensets are not.

s1 = set()
s1.add(“hello”)
s2 = set([‘hello’])
s2.add(“goodby”)
s2 - s1 # Gives “goodby”
s2 | s1 # Gives set([“hello”, “goodby”])
s2 & s1 # Gives set([“hello”])
s2 ^ s1 # Gives set([“goodby”])

Sets and Frozensets

for Earth Scientists:
27 & 29 Sept. 2011

Dictionary
A collection of data (values) accessed via other,
immutable, data (keys). An associative array.
d = {“a”: 10, “abc”: 555.3]
for k, v in d.items():
 print k # a, abc
 print v # 10, 555.3

for k, v in zip(d.keys(), d.values()):
 print k # a, abc
 print v # 10, 555.3

d[“abc”] = 77.8895 # OK
d[“zzz”] = [1, 2, 3] # OK
d = {} # New empty dictionary

Dictionaries

for Earth Scientists:
27 & 29 Sept. 2011

File
Type representing data stored on disk (or something
that looks like data on a disk). A file must be opened,
used, and closed.

f = open(‘filename’, ‘w’)
f.write(‘Some data’)
f.close()

Using the file type for output

f = open(‘filename’, ‘r’)
for line in f:
 print line
f.close()

Using the file type for input

for Earth Scientists:
27 & 29 Sept. 2011

Function
Function is a type too. You can assign functions to
variables, pass them to functions, and generally
become confused. e.g Useful for general integration
of a function.

def addOne(x):
 return x+1
b = addOne
print b(4)
prints 5

Assign a function

for Earth Scientists:
27 & 29 Sept. 2011

None

Special value (with its own type) that represents no
data. Useful as default value for an optional argument
to a function.

if x is None:
 # default case
else:
 # use x in calculation

None

Digression: what is typed?

for Earth Scientists:
27 & 29 Sept. 2011

Digression: what is typed in
Fortran?

for Earth Scientists:
27 & 29 Sept. 2011

10000000 00100101
value

+37

storage size (2 bytes)

integer(dp) :: i

i = 37
print*, i

! compiler error:
i = “string”

The variable i carries
the type information

in fortran

type

Digression: what is typed in
Python?

for Earth Scientists:
27 & 29 Sept. 2011

10000000 00100101
value

+37

storage size (2 bytes)

i = 37
print i

This is fine:
i = “string”

The data carries the
type information in

python

type

type

Namespaces and
modules: Python is

designed

for Earth Scientists:
27 & 29 Sept. 2011

Who is Mike?

Mike from geophysics Professor Kendall

use a namespace use an alias

Accidentally reusing the same name is a major problem for
large pieces of code (more than one screenful) and makes
code reuse difficult. Such “namespace pollution” can be avoided
in Python (and Fortran) by using modules

geophys.mike

for Earth Scientists:
27 & 29 Sept. 2011

Modules
Modules are Python’s containers for namespaces. They are just
a file (called name.py) with Python code inside - i.e. they are
just like the files you wrote in practical 1. Use import to load
a module and create a namespace.

import foo

print foo.var
print foo.calc(10)

for Earth Scientists:
27 & 29 Sept. 2011

def calc(i)
 return i*5

var = 15
foo.pyMain code

Modules have names...

import foo

print foo.var
print foo.calc(10)

print foo.__name__

print __name__

for Earth Scientists:
27 & 29 Sept. 2011

def calc(i)
 return i*5

var = 15

print “foo loaded”
foo.py

Main code

... and are executed on import

import foo

for Earth Scientists:
27 & 29 Sept. 2011

import foo as bar

 from foo import *
Load everything into your namespace. Access var and calc()
directly. Dangerous. Do not use! Things names _var are not
imported.

Create a new namespace foo. Load foo.py. Access as foo.var
and foo.calc(). Mangle names like _ _ internal_function.

Just like import foo, but the namespace is bar. Access as bar.var
etc. e.g. import math as m (to save keystrokes).

Scripts as modules and
modules as scripts

for Earth Scientists:
27 & 29 Sept. 2011

import math

def hypot(a, b):
 return math.sqrt(a**2 + b**2)

if __name__ == “__main__”:
 import sys
 print hypot(float(sys.argv[1]),
 float(sys.argv[2]))

triangles.py

Can use triangles.py directly, or import triangles.

Have the OS find python

for Earth Scientists:
27 & 29 Sept. 2011

#!/usr/bin/env python
import math

def hypot(a, b):
 return math.sqrt(a**2 + b**2)

if __name__ == “__main__”:
 import sys
 print hypot(float(sys.argv[1]),
 float(sys.argv[2]))

triangles.py

#> chmod u+x triangles.py

The standard library:
How Python comes

with batteries included

for Earth Scientists:
27 & 29 Sept. 2011

Standard library
As well as being useful to organise your own code, Python
modules and packages (modules containing other modules) are
used to distribute useful code to others. ~300 modules in the
standard library.

for Earth Scientists:
27 & 29 Sept. 2011 http://docs.python.org/library/

math
sys

datetime

random

os.path

gzip

http://docs.python.org/library/
http://docs.python.org/library/

for Earth Scientists:
27 & 29 Sept. 2011

math

import math as m
a = m.radians(90)
m.sin(a) # ~1
m.cos(a) # ~0

Lots of mathematical functions. You will need
use this to do anything beyond arithmetic. Look
at cmath for functions that handle complex
numbers properly

for Earth Scientists:
27 & 29 Sept. 2011

datetime

import datetime
a = datetime.date(2011,9,27)
b = datetime.date(2011,9,29)
c = a - b
c.total_seconds()
-172800.0 : two days

Create variables to hold dates, times and the
time difference between two dates or times.
Can handle time zones.

for Earth Scientists:
27 & 29 Sept. 2011

sys

import sys
sys.stdin # File object connected to <
sys.argv[1] # 1st command line argument
sys.argv[2] # 2nd command line argument
sys.argv[0] # script name

This module allows you to interface with the
operating system and shell environment.

for Earth Scientists:
27 & 29 Sept. 2011

os.path

import os.path
os.path.join(‘a’,’b’) # ‘a/b’
os.path.split(‘a/b’) # (‘a’, ‘b’)
os.path.splitext(‘a/b/f.o.txt’)
(‘a/b/f.o’, ‘.txt’)

Chop up and join together file paths in a way
that is aware of the convention of the computer
where the script is running.

for Earth Scientists:
27 & 29 Sept. 2011

gzip

import gzip
f = gzip.open(“file.gz”, ‘rb’)
for line in f:
 print line
f.close()

Allows you to work with compressed files as if
you were using the built in file type. The ‘b’
means open in binary mode.

for Earth Scientists:
27 & 29 Sept. 2011

random

import random
random.seed() # Set up PRNG
print random.randint(0, 7)
a number between 1 and 6

A module to allow the generation of sequences
of pseudo-random numbers. Based on Mersenne
Twister generator.

http://docs.python.org/library/

http://docs.python.org/tutorial/

for Earth Scientists:
27 & 29 Sept. 2011

http://docs.python.org/libary
http://docs.python.org/libary
http://docs.python.org
http://docs.python.org

