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To reduce the probability of future large earthquakes, traffic light systems (TLSs) define

appropriate reactions to observed induced seismicity depending on each event’s range

of local earthquake magnitude (ML). The impact of velocity uncertainties and station site

effects may be greater than a whole magnitude unit ofML, which can make the difference

between a decision to continue (“green” TLS zone) and an immediate stop of operations

(“red” zone). We show how to include these uncertainties in thresholds such that events

only exceed a threshold with a fixed probability. This probability can be set by regulators to

reflect their tolerance to risk. We demonstrate that with the new TLS, a red-light threshold

would have been encountered earlier in the hydraulic fracturing operation at Preston

New Road, UK, halting operations and potentially avoiding the later large magnitude

events. It is therefore critical to establish systems which permit regulators to account for

uncertainties when managing risk.

Keywords: induced seismicily, local magnitude, uncertainties, traffic light system, hydraulic fracture, mining,

Monte - Carlo method

1. INTRODUCTION

The increasing number of industrial operations related to hydrocarbon extraction, geothermal
power production, hydraulic fracturing for shale gas exploitation, wastewater injection, water
impoundment, hydrocarbon storage, and mining operations in recent years, and the potential for
large-scale subsurface CO2 storage in future, has increased the importance of understanding and
de-risking induced seismicity both to the scientific community and to the public who live near
such operations (Grigoli et al., 2017). The potential to induce seismicity by human activities is well-
known (McGarr et al., 2002; Elsworth et al., 2016; Foulger et al., 2018; Keranen and Weingarten,
2018; Schultz et al., 2020). Military waste fluid injected in the Rocky Mountain Arsenal in the
1960’s near Denver, Colorado (Healy et al., 1968), induced the so-called “Denver earthquakes.”
Since then induced earthquakes related to mining (Arabasz et al., 2005; Fritschen, 2010), oil and
gas field depletion (Bardainne et al., 2008; Van Thienen-Visser and Breunese, 2015) shale gas
exploitation (Bao and Eaton, 2016; Clarke et al., 2019; Lei et al., 2019), geothermal exploitation
(Häring et al., 2008; Deichmann and Giardini, 2009), and waste water disposal (Ellsworth, 2013)
have been documented around the world (Baisch et al., 2019). In the UK, induced earthquakes
related to hydraulic fracturing at Preese Hall (Clarke et al., 2014), and Preston New Road
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(Clarke et al., 2019) have been observed, and the latter led to an
indefinitely imposed UK government moratorium on fracking.

Traffic light systems (TLS; Bommer et al., 2006; Majer et al.,
2012; Mignan et al., 2017; Baisch et al., 2019) are used widely to
manage hazard and risk due to induced seismicity in geothermal
and hydrocarbon industries, whereby operations are continued
(“green”), amended (“amber”), or stopped (“red”) based on
the local event magnitude. In the original TLS developed by
Bommer et al. (2006), the TLS thresholds are based on peak
ground velocity, but other TLSs have been implemented based on
earthquake magnitude or other ground motion parameters, such
as peak ground acceleration (Ader et al., 2020). Depending on
the industrial activities, criteria for a TLS may be very different.
Baisch et al. (2019) and He et al. (2020) summarized some
examples of existing TLSs that correspond to different industrial
activities. In the UK the “amber” and “red” thresholds for induced
seismicity related to unconventional oil and gas operations are
set to local earthquake magnitudes ML = 0 and ML = 0.5,
respectively, and this has led to multiple halts of hydraulic
fracturing operations during the past few years (Clarke et al.,
2019) and finally to an immediate moratorium of operations in
November 2019.

The thresholds between zones in TLS are often defined based
on limited case studies and on a priori assumptions in a best
effort to provide simple schemes (Grigoli et al., 2017; Baisch
et al., 2019). Consequently, they do not necessarily take into
account the range of possible scenarios, nor uncertainties in
event magnitudes, and hence some operations will incorrectly
continue, increasing the risk of larger triggered earthquakes,
while others will be wrongly halted. To ensure actions taken
are robust, it is therefore necessary to estimate local magnitudes
with uncertainties, and to consider them in the choice of ML

thresholds in TLSs.
Assessing accurate magnitudes for human-induced

earthquakes such as shale gas stimulation, waste water storage,
or enhanced geothermal systems is difficult, because they are
affected by lack of knowledge about the Earth’s subsurface
between the source and receivers and by the magnitude scale
used (Kendall et al., 2019). A standard approach to determine
ML is to first locate the earthquake and then apply an empirical
scaling relation to the source-to-receiver distance (Gutenberg
and Richter, 1942; Gutenberg, 2013). Source location-related
uncertainties in ML can then be evaluated using the location
confidence ellipses. Unfortunately, estimating errors on ML

due to velocity model uncertainties, energy attenuation during
propagation or site effects such as wavefield focusing is difficult.

It is well-known that the accuracy of hypocenter locations
depends largely on the velocity model accuracy (Husen and
Hardebeck, 2010). Various efforts have been made to estimate
velocity model uncertainties, by including a correction term to
traveltime curve predictions (Myers et al., 2007), making random
perturbations around a given velocity model (Poliannikov et al.,
2013) and by locating seismic events in an ensemble of velocity
models obtained by a Bayesian analysis of independent data
(Gesret et al., 2011; Hauser et al., 2011). Recently, Garcia-
Aristizabal et al. (2020) analyzed different sources of uncertainty
that can be relevant for the determination of earthquake source

locations, and introduced a logic-tree-based ensemble modeling
approach for framing the problem in a decision-making context.
Their approach, however, is not fully probabilistic, but limited to
a finite set of explored models.

Here we propose a way to calculate local magnitudes
with uncertainties for microseismic events, and to include the
uncertainties in the design of TLS. We use a 3D Monte Carlo
non-linear traveltime tomography method to jointly invert for
hypocenter locations and velocity model. This allows us to obtain
posterior distributions for local magnitudeML, which cover both
velocity and source location uncertainties. Results clearly show
that velocity uncertainties and station site effects are significant
and change the zones of the TLS to which events are assigned,
hence they directly affect safety related decisions. We then apply
our method to the hydraulic fracturing induced seismicity at
Preston New Road, UK and a mining site, and demonstrate that
a red-light would have been encountered earlier if uncertainties
would have been accounted for in the TLS thresholds.

2. METHODS AND DATA

Usually, local magnitudes ML are calculated by first locating
the earthquake using standard linearized earthquake location
methods (e.g., Klein, 2002), which require simple assumptions
about the unknown underlying subsurface seismic velocity
structure, and then applying an empirical scaling relation to
the source-receiver distance to determine ML (Gutenberg and
Richter, 1942; Gutenberg, 2013). The solution found by such
location methods depends on the a priori best guess velocity
model, and so it is not guaranteed to find a location near that
of the true earthquake. They also cannot represent uncertainties
onML related to velocity model uncertainties, energy attenuation
during propagation, or site effects such as wavefield focusing.

2.1. Non-linear Joint Hypocenter-Velocity
Travel-Time Tomography
We use a probabilistic approach to jointly invert for hypocenter
locations and 3D subsurface velocity. Our approach is based on
a reversible jump Markov chain Monte Carlo algorithm (Green,
1995), which is an iterative stochasticmethod to generate samples
from a target probability density. In a Bayesian approach all
information is described in probabilistic terms. The goal is to
calculate the posterior probability distribution function (pdf)
which describes the probability of model m being true given
observed data d and other relevant, a priori information. The
posterior pdf is defined using Bayes’ theorem (Jaynes, 2003): this
combines prior knowledge about the model the prior probability
p(m) with a likelihood function p(d|m) that describes the
probability of observing the data if the particular given modelm
was true. In our approach, the posterior probability is a trans-
dimensional function: the number of parameters is not fixed, and
hence the posterior pdf is defined across a number of spaces with
different dimensionalities.

We use the approach and code of Zhang et al. (2020) and
use arrival times of P and S body waves from local earthquakes
as data, and include the velocity model, the average arrival time
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uncertainties, source locations and original time as parameters.
The 3D subsurface velocity model is defined in terms of a
Voronoi tessellation of constant velocity cells, where both the
position of Voronoi cells and their number can change during
sampling, guided by the data and prior information. However,
due to the parsimony of Bayesian inference, complicated models
(models with many cells) tend to be rejected in favor of simpler
models, if they fit the data equally well. The full model vector m
is given by

m =
(

σ , n, s,Vs,Vp, e
)

, (1)

where n is the number of Voronoi cells, s describes
their positions, and Vs and Vp describe the S- and
P wave velocity within each Voronoi cell. The vector

e =

(

e1x, e
1
y , e

1
z , e

1
t , ...e

N
x , e

N
y , e

N
z , e

N
t

)

contains source locations

and origin times of N events, and σ is the arrival time data
uncertainty. The travel time uncertainties for event i are defined
as Zhang et al. (2018):

σi = σ0ti + σ1, (2)

where σ0 and σ1 are noise hyperparameters and t the P or S
travel time.

We initialize 20 Markov chains with randomly generated
starting models drawn from the prior distribution so that each
chain starts from a different point in model space. To minimize
dependence on this initial model, chains progress through a
large number of samples called the burn-in phase from which all
models are discarded. To reduce dependence of each sample on
the next, after burn-in we only store every 200th model to use
as samples of the posterior distribution. Each chain sampled 1.88
millionmodels. At each step of theMarkov chain a newmodelm′

is generated by perturbing the current model. In our approach
we have seven types of possible perturbation: adding, removing
or moving a Voronoi cell (i.e., changing s), changing the P or S
velocity of a randomly chosen Voronoi cell (Vp, Vs), changing
the noise hyperparameter σ , or changing the source coordinates
of one randomly chosen source (e). The type of perturbation is
selected randomly at each iteration, and the candidate model m′

is accepted with a probability α (Green, 1995) given by:

α
(

m′|m
)

= min

[

1,
p

(

m′
)

p (m)

q
(

m|m′
)

q (m′|m)

p
(

dobs|m
′
)

p (dobs|m)
|J|

]

(3)

where J is the Jacobianmatrix of the transformation fromm tom′

and is used to account for the volume changes of parameter space
during jumps between dimensions, and q

(

m|m′
)

are proposal
distributions that we use to propose new modelsm′ at each step.
In our case, it can be shown that the Jacobian is an identity matrix
(Zhang et al., 2018).

A key function in the acceptance probability is the likelihood
p(d|m) which quantifies the misfit between the observed data
dobs and estimated data dest obtained by an eikonal solver using
the fast marching method (Rawlinson and Sambridge, 2004) in
modelm. The likelihood is defined as:

p (d|m) ∝ exp

(

−φ(m)

2

)

(4)

where

φ (m) =
∑

i

(

di
obs

− diest
)2

σi
(5)

and σi is the P or S wave travel time uncertainty for event i
given by Equation (2). The likelihood function contains both the
effect of the errors in the source locations and the velocity model
uncertainties on the travel times. We choose uniform priors for
the source location coordinates and the number of Voronoi cells,
and Gaussian priors for all other parameters. A full and more
detailed description of the methodology can be found in Zhang
et al. (2018, 2020).

2.2. ML Scaling Relations
A general local magnitude scaling relation is described by

ML = log10(A)+ a log10(r)+ br + c+ d exp
(

fr
)

, (6)

where r is the hypocentral distance in km, and A is the zero-to-
peak amplitude in nm on the horizontal components filtered with
a Wood-Anderson response (Ottemöller and Sargeant, 2013;
Butcher et al., 2017; Luckett et al., 2018). Parameters a, b, c, d, and
f are region dependent constants which describe the geometrical
spreading (a), attenuation (b), the base level (c), and distance
dependent correction terms (d and f ), respectively.

The original BGS scaling relation given by Ottemöller and
Sargeant (2013) is

MOS
L = log10(A)+ 1.11 log10(r)+ 0.00189r − 2.09 . (7)

This was updated by Butcher et al. (2017) to account for short
source-receiver distances, giving

MB
L = log10(A)+ 1.17 log10(r)+ 0.0514r − 3 . (8)

The ML scaling relation now used by the BGS (Luckett et al.,
2018) is:

ML
L = log10(A)+1.11 log10(r)+0.00189r−1.16 exp (−0.2r)−2.09 .

(9)
The latter scale was used for the BGS locations throughout this
paper.

2.3. Data
We use data from surface seismic monitoring arrays at two sites
in the United Kingdom: (1) Preston New Road, where hydraulic
fracturing took place in the Bowland Shale tight gas reservoir, and
(2) Thoresby Colliery, a deep coal mine in Nottinghamshire.

At Preston New Road, hydraulic fracturing started on 15
October 2018 at the PNR-1z well in Lancashire, UK under the
guidance of Cuadrilla Resources Ltd. and targeted the Bowland
shale at a depth of ∼2,300 m (Clarke et al., 2019). During
operations, the British Geological Survey (BGS) detected 172
local seismic events with local magnitudes ML between −1.8
and 1.6. The ML = 0 threshold (“amber”) was exceeded by nine
events, six of which had local magnitudes larger than 0.5 (“red”
zone). In late October 2018, five events occurred that exceeded
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FIGURE 1 | Induced seismicity at hydraulic fracturing site at Preston New Road, UK. Background colors indicate the three zones of the UK TLS. Smaller gray dots

show the moment magnitude (Mw ) for events observed on the dowhole geophone array. Larger dots show the local magnitude (ML) for events observed by the

surface seismometer array, and are color-coded by the TLS zone into which they fall. The blue line shows the cumulative volume of fluid injected into the well.

FIGURE 2 | Seismicity at Preston New Road. (A) Seismic stations (yellow dots) near the Preston New Road hydraulic fracturing site near Blackpool (location shown in

inset) and seismic events used in this study (orange dots). The injection well is shown by a black line. The cyan dot marks an earthquake discussed in Figure 5. (B)

Histogram of depth distribution of the seismic events recorded at the surface array (orange) and the downhole geophone array (gray). (C) Distribution of seismic events.

the red light TLS thresholds after which operations were paused
for a month, but microseismicity still occurred during the hiatus
(Figure 1). The largest event with ML = 1.6, which was felt by
some local residents, occurred on 11 December 11:21:15 UTC

after operations resumed on 8 December. Hydraulic fracturing
operations of the well ended on 17 December 2018. Over the
course of 3 months more than 38,000 microseismic events were
detected in real-time with the geophone array, with moment
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FIGURE 3 | Seismicity at the Thoresby Colliery mining site. (A) Seismic stations (yellow dots) near the UK’s last deep coal mine in New Ollerton (location shown in

inset) and seismic events used in this study (blue dots). The coal seam mine galleries are outlined by red rectangles. (B) Depth distribution of the seismic events as

determined by the British Geological Survey. Depths for all events in the catalog are shown in pink; the blue bars correspond to the subset of the catalog used in this

study.

magnitudes Mw between −3.1 and 1.6 (Clarke et al., 2019).
We analyzed the P- and S-wave travel time data for the 172
largest earthquakes which were recorded at 11 seismic stations
by the BGS (Figure 2). The majority of these events occurred
between 2 and 2.5 km depth and occur in the vicinity of
the well.

2.3.1. Thoresby Colliery
Thoresby Colliery in New Ollerton has a history of seismicity
related to mining (Bishop et al., 1993), and in response to
felt earthquakes between December 2013 and January 2014,
the British Geological Survey (BGS) installed a temporary
seismic network with seven seismometer stations, four of which
are three-component broadband stations (Figure 3). Mining-
induced earthquakes are some of the most widely studied
and their magnitude and depth range is similar to fracking
induced earthquake magnitudes (Davies et al., 2013), hence
provide an excellent analog for the study of hydrofracturing
induced seismicity.

Most of the seismic events used in this study are located
north and south of the coal seams (Figure 3), and the majority
of the events occurs at 800 m depth, which coincides with the
depth of the coal seams (Butcher et al., 2017). The northern
cluster occurred later in 2014 than the southern one. To
reduce the computational costs we only use 61 seismic events
out of the 305 recorded, giving 769 P- and S travel times
to invert.

3. RESULTS

TheMcMC joint inversion provides us 3D posterior distributions
of seismic velocities (Vp and Vs), and of the earthquake
hypocenter locations (Figures 4A,B). Therefore, we can calculate
hypocentral distance posterior distributions (Figure 4C), which
in turn allows us to estimate station-average local magnitudes
ML posterior distributions (Figure 4D) using a scaling relation
(e.g., one of Equations 6–8). These distributions include the
effects of velocity and source location uncertainties as well as the
source radiation pattern on the pdf for event magnitudes. The
station-averaged ML posterior distribution for one source may
have a width that spans more than one zone of the traffic light
system (e.g., cyan distribution in Figure 4D) which indicates that
velocity model uncertainties alone can change the TLS zone to
which the earthquake is attributed. Thus, uncertainties affect real
operational decisions.

3.1. Scaling Relation and Station Site
Effects on ML
Figure 5 summarizes uncertainties in ML due to scaling relation
and station site effects at one station at Preston New Road. We
observe that the particular choice of ML scaling relation affects
the local magnitude and is itself large enough to change the
TLS zone. Local magnitudes are more than half a magnitude
unit larger using the original BGS scaling relation (MOS

L ,
Equation 6) compared to the most recent scale (ML

L , Equation
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FIGURE 4 | Results of the McMC joint hypocenter-velocity tomography at Preston New Road. (A) Shear wave velocity Vs at 0.8 km depth and its standard deviation.

(B) Posterior probability distribution of hypocenter locations in longitude-latitude for six different sources. (C) Posterior probability distribution of hypocentral distance

of one source to one station. (D) Posterior probability distribution of local magnitude of the same event as in (C), calculated from the hypocentral distance using the

scaling relation in Equation (8).

FIGURE 5 | Effect of scaling relation and station site effects on ML for Preston New Road stations. Local earthquake magnitude ML posterior probability distributions

for the cyan colored earthquake in Figure 1. (A) Effect of the local magnitude scaling relation (Ottemöller and Sargeant, 2013; Butcher et al., 2017; Luckett et al.,

2018) (Equations 6–8). (B) Single-station magnitudes at 6 stations using Equation (7). Background colors indicate the zones of the UK traffic light system (Department

of Energy and Climate Change, 2013). Dashed lines indicate the mean.

8) (Figure 5A; Supplementary Figure 1) and therefore make a
difference between a continuation (“green”) and an immediate
stop (“red”). Note, however, that the original BGS scaling relation

was not used by the BGS to calculate ML for these events; we
include it here to show the effect of magnitude scale choices. The
difference inML between theMB

L scale (Equation 7) and the most
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FIGURE 6 | Comparison of velocity and station site effect uncertainties on local magnitudes at Preston New Road. (A) Uncertainties on the station-averaged

magnitude calculated with the amended BGS scale (Equation 8) due to velocity uncertainties (purple error bars) and station site effects (gray bars). Black dots mark

the maximum of the station-averaged ML distribution for each seismic event. Background colors indicate the three zones of the UK traffic light system, “green,”

“amber,” and “red.” (B) Normalized histograms of the magnitude uncertainties displayed in (A). Numbers display the velocity and station-site effect uncertainties at

which the histograms take maximum values.

recent UK scaling relationML
L (Equation, 8) are smaller, but peaks

of distributions can lie in different zones of the TLS (Figure 5A).
Station site effects such as attenuation, focusing, and radiation

pattern become evident by comparing ML distributions at
individual stations. These uncertainties can shift theML posterior
distribution for one source by half a magnitude unit, sometimes
more, easily sufficient to move the source into another zone
of the TLS (Figure 5B; Supplementary Figure 2). We compare
velocity and station site effect uncertainties on local magnitudes
in Figure 6 for the hydraulic fracturing induced earthquakes at
Preston New Road. The site effect uncertainties are estimated
by calculating the mean local magnitude for each seismic source
at all 4 stations (using the amended BGS scaling relation,
Equation, 8), and then taking the difference between the
smallest and largest mean station magnitude as a measure
of site-related uncertainties. The velocity-related uncertainties
are defined as the width of the interval between the 5–95%
percentile of the station-averaged local magnitudes distributions.
Their effects each average around ±0.125 and ±0.05 magnitude
units, respectively, in our case study, but they vary and can

have a combined effect that alters magnitude estimates by

up to a whole magnitude unit (Figure 6). We observe that

uncertainties are also roughly equally important for the mining
induced seismicity at New Ollerton—their effects average around
±0.3 and ±0.05 magnitude units for site and velocity-related
effects, respectively—with a combined effect that again can alter

magnitude estimates by up to a whole magnitude unit, and
potentially move events from “green” to “red” zones (Figure 7).

4. A PROBABILISTIC TRAFFIC LIGHT
SYSTEM

We can now include the velocity and station site effect
uncertainties inML in a traffic light system (TLS). To do this, we
first calculate ML threshold probability curves using the station-
averaged ML posterior distributions of the microseismic events
at Preston New Road. Threshold probability curves describe the
probability that an earthquake of a given magnitude is in any one
zone of the TLS. They take into account velocity and station-
site effect uncertainties, as well as attenuation and geometrical
spreading in ML. Furthermore, the threshold probability curves
allow us to draw conclusions about the range of observedML for
which the probability of any earthquake being in a zone drops
below a given confidence level α. The last point is particularly
interesting for regulators and operators because it enables them
to define the thresholds between zones in such a way that the
probability of an earthquake being in each zone of the TLS is
always above a chosen confidence level α.

ML threshold probability curves are obtained by shifting
each of the 172 station-averaged event ML pdfs along the
local magnitude axis and estimating the percentage of the
distribution lying in each of the three zones of the TLS
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FIGURE 7 | Comparison of velocity and station site effect uncertainties on local magnitudes at New Ollerton mining site. (A) Uncertainties on the station-averaged

magnitude calculated with the amended BGS scale (Equation 8) due to velocity uncertainties (purple error bars) and station site effects (gray bars). Black dots mark

the maximum of the station-averaged ML distribution for each seismic event. Background colors indicate the three zones of the UK traffic light system, “green,”

“amber,” and “red.” (B) Normalized histograms of the magnitude uncertainties displayed in (A). Numbers display the velocity and station-site effect uncertainties at

which the histograms take maximum values.

(Supplementary Figure 3). By averaging over all threshold
probabilities curves, we obtain one curve that describes the
probability of an earthquake with a given magnitude being in any
zone of the TLS. This can then be used to draw conclusions about
(1) probabilities of earthquakes of a certain event magnitudeML

being in any one of the TLS zones, and (2) theML range for which
the probability of any earthquake being in a zone drops below a
given confidence level α.

Our approach here is approximate, but once the first inversion
if performed, subsequent assignment of a new event’s ML to the
correct zone of an adjusted TLS is trivial and can be done in real
time, as explained below. In theory, however, the most rigorous
approach to incorporating uncertainty into the calculation ofML

for any one event is to retrieve its full posterior ML distribution,
which is the averaged pdf across all stations for that one event.
Although at this point we can do this for any existing event
in our dataset, in practice we want to be able to do this for
each new event that occurs, in real time. This presents a large
challenge, however, since formally we must add the travel times
from this new event to our dataset and re-run the whole sampling
procedure again. We have added one new earthquake to the
dataset and sampled 140,000 newmodels. This took 14,880 CPU-
hours on the ARCHER HPCmachine, and so remains practically
impossible for real time monitoring. Furthermore, theML pdf of
the new event is still sparsely sampled, and hence does not allow
for a robustML uncertainty quantification.

4.1. TLS With Realistic Uncertainties
A regulator or operator can choose whether they wish to
minimize the probability of any such event exceeding a TLS
threshold undetected, or to maximize the certainty that an
event truly has exceeded the legal magnitude limits in order
to avoid unnecessary, costly halt of operations. We term the
first TLS–, where the ML thresholds are shifted toward smaller
apparent-magnitude thresholds. In this way, the risk of smaller-
magnitude events leading to large earthquakes is reduced because
operations are both halted and put “on caution” earlier. In
the latter, the TLS thresholds would effectively be increased to
higher values (TLS+), so that operations could still continue
up to larger apparent earthquake magnitudes. The choice of
the risk system by the operator (TLS+ or TLS–) is, however,
subjective and depends on the country’s governmental policies.
The choice of the confidence level defines the TLS thresholds,
but these as well as the risk strategy can be changed at
any time.

For example, say a regulator or operator chooses that the
confidence level with which each event is assigned to the correct
zone must be at least 80% for decisions to be made. The range
of estimated ML values that would have less than α = 0.8
probability is −0.036 < ML < 0.035 (zone A) and 0.46 < ML <

0.53 (zone B) (gray zones in Figure 8A) using the current UKTLS
thresholds. Then, in a TLS–, all of zone A would be attributed
to “amber,” and zone B to “red,” effectively moving the TLS
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FIGURE 8 | Developing TLS systems where the risk of larger triggered

earthquakes is potentially reduced (TLS–), and a TLS where the risk of

unnecessary, costly stop of operations is reduced (TLS+). The threshold

probability curves describe the probability of an event of local magnitude ML

being in any one of the TLS zones (color coded red/amber/green for each

zone). (A) Earthquakes that have ML estimates in zones A and B cannot be

assigned to “red/amber/green” with 80% confidence. (B) For a 20% risk of an

event exceeding a TLS threshold undetected, zones A and B are attributed to

“amber” and “red,” respectively (TLS–). (C) For 80% certainty that any event

has exceeded a threshold, zones A and B are attributed to “green” and

“amber,” respectively (TLS+). Black dots in (C) mark probabilities for example

earthquakes of different ML.

thresholds to lower values (Figure 8B). Alternatively, in a TLS+,
zone A would be assigned to “green” and zone B to “amber,” so
the TLS thresholds would effectively be increased to higher values
(Figure 8C).

The uncertainties in ML discussed here are site specific so
need to be determined for each geographical area or industrial
operation individually. However, our approach can be applied
to any site and to any form of induced seismicity. We have also
demonstrated that for the Thoresby Colliery mining site in the
UK the velocity model and station site effect uncertainties inML

are non-negligible (Figure 7), and can be accounted for in the
choice of TLS thresholds (Supplementary Figure 4).

5. APPLICATION OF A PROBABILISTIC TLS
TO PRESTON NEW ROAD SEISMICITY

We can use the three TLSs (Figure 8) to analyze retrospectively
how decisions would have changed at Preston New Road under
a TLS+ or TLS– (Figure 9). We compare here the classification
in the UK-TLS, a TLS– and TLS+ for a 80% confidence level
(Figure 5). That means, the risk of exceeding a TLS threshold in
TLS– is 20%, while in the TLS+, the certainty that a threshold was
exceeded is 80%. The earthquake on October 19th would have
been classified as “amber” in all three TLSs using the maximum
probability magnitude, whereas it was classified as “green” by the
operator. Hence, action would have been taken earlier and the

probability of subsequent larger events would have been reduced.
The same is true for the seismicity on October 24th (Figure 9B),
where operations would have stopped immediately with a safety
prioritizing system (TLS–), and also in the UKTLSwith aML that
accounts for uncertainties. This demonstrates the importance
of accounting for uncertainties in local magnitudes ML in the
decision-making process.

We acknowledge that the occurrence of induced seismicity
is a multi-parameter phenomenon, depending on details of
subsurface structures as well as on the complete history
of operational measures and therefore cannot be predicted.
Deformation processes may continue and can still induce
seismicity after injections stop. The delay time between hydraulic
fracturing completion and the cessation of the observed
seismicity can be up to several years (Baisch et al., 2019).
It is therefore speculative that an earlier stop would have
prevented large magnitude post-injection seismicity at PNR.
Nevertheless, it has been shown that lower ML threshold
values in the TLS used for the geothermal stimulation in
Basel, Switzerland could have prevented larger magnitude post-
injection seismicity (Baisch et al., 2019). We therefore argue
that it is critical to establish systems which permit regulators to
account for uncertainties while managing risk, as we propose
here.

6. CONCLUSIONS

We implemented a fully Bayesian approach for analysing
uncertainties, such as velocity model and source location
uncertainties in local earthquake magnitudes and evaluate
their influence on decision-making for induced seismicity.
We conclude that these uncertainties are important, as they
can make a difference of up to one or two magnitude
unit, and hence directly affect operational decisions by
potentially moving an earthquake two zones in a traffic
light system (TLS) leading to radically different operational
outcomes.

To build a site-specific probabilistic TLS that accounts
for uncertainties, the following three steps are necessary:
(1) run one fully non-linear hypocenter-velocity tomography
for the site and calculate ML posterior distributions for
each earthquake. (2) calculate threshold probability curves,
choose a desired confidence level α, and determine the
ML zones A and B below the desired confidence level. (3)
attribute zone A and B to “green/amber” or “amber/red”
according to the desired safety system (reduce the risk of
larger magnitude events (TLS–) or reduce the risk of halting
operations unnecessarily (TLS+)). From this point on, real
time assignment of any new event’s ML to the correct TLS
zone is trival, yet incorporates all the uncertainty in the
measurements.

We applied our method to anthropogenic seismicity at a
hydraulic fracturing site in the UK, and demonstrate that
a red-light threshold would have been encountered earlier
in a TLS–, which possibly could have prevented the UK-
wide shut-down. We also applied our methods to mining-
related seismicity at Thoresby Colliery, UK and find they
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FIGURE 9 | Classification of seismic events for 4 days (A-D) in the UK TLS (top two rows). Row 1 shows results using the local magnitudes determined by the BGS

while other rows use the maximum probability magnitude determined in this work. Row 3: Classifications for a TLS where the risk of unnecessary, costly stop of

operations is reduced (TLS+). Row 4: TLS where the risk of larger triggered earthquakes is potentially reduced (TLS–). Both were calculated for an 80% confidence

level.

apply equally well in this different setting. Hence, our
approach can be applied to any site and any form of
seismicity.
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