GOALS. Evaluate how models calculate photolysis (and indirectly heating) rates in the stratosphere and troposphere with the incentive of locating errors or biases and identifying improved and practical methods. There are three basic parts to PhotoComp2008:
(1) Basic test of all J- values for high sun (SZA=15 ${ }^{\circ}$), w/ \& w/o additional scattering layers (stratiform clouds \& stratospheric volcanic aerosols).
(2) Test of twilight, sphericity, and 24-hour averages (SZA $=84^{\circ}-96^{\circ}$).
(3) Test of wavelength integration w/o scattering (SZA = 15°).

There will be one standard atmosphere, whose primary definition will include air mass, ozone mass, and temperature in each layer. This atmosphere is typical of the tropics, ozone column $=260$ DU. For efficiency, we will use this same atmosphere in all sections, even the low-sun, polar cases.

PARTICIPATION. This study is designed to aid development and testing of the photolysis and short-wave heating codes used in chemistry-transport models and coupled chemistry-climate models. This project is open: any research group can participate by running the experiments and reporting the results as specified below. We also encourage participation from groups (without CTMs or CCMs) who have participated in other model-measurement studies (e.g., IPMMI, POLARIS). Many CTM/CCMs will be using "the same" photolysis scheme (e.g., fast-TUV, fast-J) and think their participation redundant - this is false. The implementation of a standard scheme into any CTM/CCM will likely alter (intended or inadvertent) how the J-values are calculated: thus it is very important when you perform these tests that the photolysis module that is as close a possible to that embedded within the CTM/CCM and not the original, standalone version that you used to derive your inline model.

EXPERIMENTS.

Part 1 is a basic test of all J-values for high sun $\left(\mathrm{SZA}=15^{\circ}\right)$ over the ocean (albedo $=$ 0.10 , Lambertian). Part 1a: Clear sky (only Rayleigh scattering) and no aerosols. Part 1b: Pinatubo aerosol in the stratosphere (layer 10). Part 1c: Stratus cloud (layer 2). The primary atmosphere (Table 1a) is specified in terms of pressure layers, mean temperature, and column O_{3} in each layer. Please do not include absorption by NO_{2} or other species in calculating optical depths. For 1 b and 1 c we recommend that you use the specified optical properties in Table 1c, interpolating across the 5 specified wavelengths.

Part 2 tests the simulation of a spherical atmosphere and twilight conditions that are critical to the polar regions. Use the same atmosphere as Part 1 without clouds or aerosols. Assume equinox (solar declination $=0^{\circ}$) and a latitude of $84^{\circ} \mathrm{N}$. The surface SZA (not including refraction) varies from 84° (noon) to 96° (midnight). Report all Jvalues at noon, midnight, and the 24-hour average (integrating as you would in your CTM/CCM). With a spherical atmosphere, the local solar zenith angle changes with altitude and if refraction is included it will change the surface angle. Please note how you treat the solar ray path in your model description.

Part 3 tests the accuracy of wavelength binning in the critical region 290-400 nm that dominates tropospheric photolysis. Shut off all Rayleigh scattering and surface reflection (albedo $=0$) giving effectively a simple Beer's Law calculation. Repeat the calculation in Part 1, but report only J-values for J-O3 (i.e., total), J-O3(1d) [$\left.\mathrm{O}_{3}=>\mathrm{O}_{2}+\mathrm{O}\left({ }^{1} \mathrm{D}\right)\right]$, and $\mathrm{J}-\mathrm{NO} 2\left[\mathrm{NO}_{2}=>\mathrm{NO}+\mathrm{O}\right]$. These are the two critical J-values for the troposphere, and they both have unusual structures in absorption cross section and quantum yields. The organizers will make these calculations using very high resolution (0.05 nm) cross sections and solar fluxes and for different options (e.g., JPL-06 vs. IUPAC cross sections) to provide a benchmark. NOTE that we will only use results below $20 \mathrm{~km}(\mathrm{~L}=1: 11)$ for this comparison.

DIAGNOSTICS.

Model Documentation should include a brief outline of the methods and any references (limit: one page). Please include brief notes on: how you treat sphericity and refraction, the Schumann-Runge bands ($\mathrm{J}-\mathrm{O}_{2}$ and $\mathrm{J}-\mathrm{NO}$), Rayleigh scattering, multiple scattering, clouds and aerosols, seasonal changes in sun-earth distance, solar variability, and any specific parameterizations. Default cross sections are JPL-2006, please note if you are using alternate.

Report all J-values and all standard model layers since this is a check on all modeled Jvalues, not just the radiative transfer solution. See Appendix for data formatting. We are not specifying the day-of-the-year, so use solar fluxes for sun-earth distance $=1.0$ au and average over the 11-yr solar cycle if possible. UCI's high-resolution solar spectrum used in these experiments is the average of two high and low SUSIM spectra (29 Mar 1992 and 11 Nov 1994), this is not meant to be the $11-\mathrm{yr}$ average. It will be provided at 0.05 nm resolution, but we encourage you to use your own solar fluxes for the primary tests since changing solar fluxes will mostly likely require a complete re-averaging of all cross-sections (see Fast-J paper, Wild, Zhu, Prather, 2000). Please report in model documentation what you are using for the solar spectrum and how the solar cycle is represented in your submissions, and if possible submit it as a separate file so that it may be used to address differences later. (With different wavelength binning, this will not be trivial.) Reported photolysis rates should be calculated for the mass mid-point of each layer, this brings PhotoComp closer to current CTM usage rather than the original gridpoint formulation used in M\&M. Results in the form of clearly labeled ascii text files should be uploaded to BADC CCMVal archive or emailed to the organisers (see web posting for specific details).

DISCUSSION.

Implementation into a particular model's code will up to the participant. For example, at UCI we have two models that we will use in PhotoComp: a fast-JX model within the CTM that uses layers of uniform composition defined by mass ($\mathrm{kg} / \mathrm{m}^{2}$); and a stand-alone photochemical box model that defines altitude (in cm) as the vertical grid and uses number densities for air and ozone. For the latter, we have re-mapped the primary
atmosphere (Table 1a) onto a grid-point structure (Table 1b) that has the same mid-layer properties as the layer mean value and the same columns of O_{2} and O_{3}.

One question will be: What is the correct answer? In some cases we may be able to define a "best" answer based on obvious physics or convergence of some of the more resolved models, but in others we may not. Thus in all of our proposed experiments we will begin with a "standard model" result (not necessarily the best answer) from one of the models and then determine a best answer, if possible, after analysis of the results.

One approach to defining the correct answer would be to merge observed radiation fields or photolysis rates (e.g., IPMMI, POLARIS, see references below), but we feel this may be too difficult to match the exact observing conditions. One way to include the knowledge gained by these field studies is to ensure participation from some of the models (e.g., NCAR-TUV, APL).

We do not recommend reporting detailed actinic fluxes as a function of wavelength since everyone selects different ways of integrating over wavelength (e.g., bins) and trying to reconcile the different wavelength scales is not worthwhile. If major problems show up, then a subgroup of models can consider how to resolve the differences.

Another major issue with photolysis and heating rates is the treatment of clouds and cloud fraction. This is very important, but probably beyond the current PhotoComp. It would require a special workshop. We do include an option for a plane-parallel volcanic aerosol layer (aka Pinatubo) and a stratiform cloud.

APPENDIX

Standard Atmosphere \& Other Specifications

L	edge p(hPa)	T	03(mas s/mass)	DU(**redundant)
$\begin{array}{r} ==== \\ 1 \end{array}$		299.9	$\text { 3. } 844 \mathrm{E}-08$	2.4532
2^{\wedge}	866.0	289.5	$4.704 \mathrm{E}-08$	4.8514
3	649.4	278.8	4.720E-08	3.6498
4	487.0	267.2	4.972E-08	2.8831
5	365.2	253.9	$5.551 \mathrm{E}-08$	2.4140
6	273.8	239.7	5.977E-08	1.9491
7	205.4	224.6	6.390E-08	1. 5627
8	154.0	209.4	9.012E-08	1.6527
9	115.5	198.2	1.486E-07	2.0441
10**	86.60	195.8	$3.885 \mathrm{E}-07$	4.0065
11	64.94	203.1	1. $533 \mathrm{E}-06$	11.8582
12	48.70	209.9	3.790E-06	21.9783
13	36.52	215.5	$6.849 \mathrm{E}-06$	29.7855
14	27. 38	220.1	1. $034 \mathrm{E}-05$	33.7361
15	20.54	224.5	1. $326 \mathrm{E}-05$	32.4219
16	15.40	228.9	1. $577 \mathrm{E}-05$	28.9124
17	11. 55	233.3	1. $653 \mathrm{E}-05$	22.7293
18	8.660	237.8	1.670E-05	17. 2239
19	6.494	242.6	1. $578 \mathrm{E}-05$	12. 2053
20	4.870	248.3	1. $363 \mathrm{E}-05$	7. 9054
21	3.652	254.1	1. $236 \mathrm{E}-05$	5.3734
22	2.738	259.5	9.733E-06	3.1740
23	2.054	262.9	8.158E-06	1. 9951
24	1. 540	265.1	6.721E-06	1. 2325
25	1. 155	266.9	5.511E-06	0.7578
26	0.8660	264.7	$4.810 \mathrm{E}-06$	0.4960
27	0.6494	261.8	4.009E-06	0.3100
28	0.4870	259.7	3. $325 \mathrm{E}-06$	0.1928

Table 1c. Scattering properties of Pinatubo and stratus layers
 Definitions

W = wavelength (nm)
$Q=s c a t t e r i n g$ efficiency (average of cross-section / (pi* $\quad r^{* * 2) ~) ~}$ typically Q ~ 2 for large clouds and Iarge aerosols

```
            fn of aerosol size distrib N(r), index of refraction, wavelength
        K = extinction(m2|g), the cross-sectional area per gram of material
            K(m2/g)=Q/ [4/3* Reff(micron)*Rho(g/cm3)]
        Reff = effective radius (microns)
            = Average[N(r)* r**3] / Average[N(r) * r**2]
        Rho = density of particles (g/cm3)
        n = index of refraction
        OD = optical depth (column)=column mass (g/m2) * K (m2/g)
        SSA = single scattering abledo
        LG(1:8) = coefficients of Legendre expansion of scattering phase fn.
            both polariztions are added. By definition SLEG(1)=1.
            Fast.JX uses these first 8 terms to define the scattering.
        g = asymmetry factor = LG(2) / 3.
Pinatubo: OD=1.0 in layer 10 (86.6 to 64.9 hPa)
============================================================
    Stratospheric aerosol composed of 75%.wt H2SO4.
    Rho = 1.630
    n}=1.514+0.000i (200 nm
        l.473+0.000i 
        1.448+0.000i (600 nm)
        1.435+0.000i (99gnm)
    Log-normal distribution with R0 = 0.08 micron & sigma = 0.800
    **check that you are using the right log-normal by deriving Reff
    Reff = 0.386 micron
    K (600nm)=2.610
    OD(@6OOnm)=1.00 ==> aerosol = 1.00/K = 0.3832 g/m2
    W Q SSA LG(2) LG(3) LG(4) LG(5) LG(6) LG(7) LG(8)
    200 2.5935 1.0000 2.092 2.914 2.880 3.295 3.185 3.430 3.379
    300 2.6669 1.0000 2.121 2.861 2.792 2.936 2.733 2.703 2.568
    400 2.5588 1.0000 2.144 2.813 2.7111 2.695 2.425 2.257 2.069
    600 2.1893 1.0000 2.149 2.713 2.547 2.362 2.018 1.740 1.499
    g99 1.4540 1.0000 2.118 2.537 2.277 1.951 1.555 1.229 0.972
    (fast-JX v61 scatter #15)
Stratus: OD = 20.0 in | ayer 2 (866 to 649 hPa)
```



```
    Pure water cloud
    Rho = 1.000
    = 1.335 + 0.000i (assumed 200.999 nm
    Deirmendji an Cumulus C1 (Gamma, n(r) = a r**alpha exp[-b r**gamma])
        mode radius Rc = 4 mi crons, alpha=6, b=3/2, gamma = 1
    Reff=6.00 micron
    K(600nm)=0.2668
    OD (@600nm)=20.0 ==> aerosol = 20.0/ K = 75.0 g/m2
    W
    300 2.0835 1.0000 2.596 3.973 4.725 5.406 6.129 6.751 7.607
    400 2.1064 1.0000 2.571 3.936 4.660 5.345 6.056 6.670 7.492
    600 2.1345 1.0000 2.557 3.902 4.596 5.263 5.923 6.507 7. 267
    999 2.1922 1.0000 2.499 3.799 4.418 5.081 5.667 6.213 6.851
    (fast-JX v61 scatter #08)
=========================================================-
==============================================================
Table 2. Standard diagnostics and file names
```



```
Ascii tables will be fine given small data sets.
Report J-values at the mid-point of Layers l through 40.
Fife names: PCO8 {model name + version if need be} {Photopart #}
Write format: J-title, J-value(1:41)'(a8,1x,41e9.2「'
File Examples:
PCO8_UCIref doc.txt (or.pdf or. doc if need formatting)
            ucl old reference code, documentation
PCO8 UCI-JX doc.text
        UCI version of fast.JX, documentation
PCO8_UCIref_Pla.txt
```

```
PCO8_UCIref_Plb.txt
PCO8_UCIref-Plc.txt
    UCI-ref results for Part l clear, Pi natubo & stratus (see sample below)
PCO8_UCIref P2n.txt
PCO8-UCIref*-P2m.txt
PCO8_UCIref - P2a.txt
    UCI-ref results for Part 2 noon, midnight and average
PCO8_uCIref_P3.txt
    UCI-ref results for Part 3 (J-03(1d) and J.NO2 only).
PC08_UCIref P1.txt
PhotoComp2008: UCI pratmo pla i(a8,1x,41e9.2)'** note that UCI ref does not calculate
L=1(933) but at surface(1000)
```



```
J-03(1D) 4.84E-05 7.00E-05 8.02E-05
J.H2COa 3.08E-05 4.43E-05 5.22E-05
```



```
Table 3. Standard J-value names.
==========================================================
Please use these abbreviations (if possible in the following order) so that J's can be
sorted. For new J's please add with unique name. (available as PCO8 J.labels.txt)
Note that for some J's, the branching ratios do not have different crōss-sections
associated with them and the branching ratios are fixed, hence we report only one J.
For many organics, the quantum yi elds are complex and have been incorporated into
these J's. If you do not calculate one of these, please keep that row in your table with
zero or blank values.
```



```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & - NO & NO & \(=\mathrm{N}+\mathrm{O}\) & & \\
\hline 2 & . 02 & 02 & \(=0+0\) & & \\
\hline 3 & - 03 & 03 & \(=0+02\) (tot al & \(=\) both O(3P) and & O(1D) ) * \\
\hline 4 & - 03 (1d) & 03 & \(=0(1 \mathrm{D})+02\) & & \\
\hline 5 & - H 2 CO & H 2 CO & \(=\mathrm{H}+\mathrm{HCO}\) & & \\
\hline 6 & - H 2 COb & H 2 COb & \(=\mathrm{H} 2+\mathrm{CO}\) & & \\
\hline 7 & - H2 02 & H2 02 & \(=\mathrm{OH}+\mathrm{OH}\) & & \\
\hline 8 & - CH 3 OOH & CH3OOH & \(=\mathrm{CH} 3 \mathrm{O}+\mathrm{OH}\) & & \\
\hline 9 & - N 02 & N 02 & \(=\mathrm{NO}+0\) & & \\
\hline 10 & - N03 & N03 & = \(\mathrm{NO}+\mathrm{O} 2(11.4 \%)\) & \& NO2 +0( \(88.6 \%)^{*}\) & \\
\hline 11 & - N2 05 & N205 & \(=\mathrm{NO} 2+\mathrm{NO} 3\) & & \\
\hline 12 & - HNO2 & HONO & \(=\mathrm{OH}+\mathrm{NO}\) & & \\
\hline 13 & - HNO3 & HNO3 & \(=\mathrm{OH}+\mathrm{NO} 2\) & & \\
\hline 14 & - HNO4 & HO2NO2 & \(=\mathrm{OH}+\mathrm{NO} 3\) & & \\
\hline 15 & - Cl NO 3 a & CINO3a & \(=\mathrm{Cl}+\mathrm{NO} 3\) & & \\
\hline 16 & - CIN03b & CIN03b & \(=\mathrm{ClO}+\mathrm{NO} 2\) & & \\
\hline 17 & - Cl 2 & Cl 2 & \(=\mathrm{Cl}+\mathrm{Cl}\) & & \\
\hline 18 & - HOCl & HOCl & \(=\mathrm{OH}+\mathrm{Cl}\) & & \\
\hline 19 & - OCl 0 & OCl 0 & \(=0+\mathrm{Cl} 0\) & & \\
\hline 20 & - Cl 202 & Cl 202 & \(=\mathrm{Cl}+\mathrm{Cl}+02\) & & \\
\hline 21 & - Cl O & Cl 0 & \(=\mathrm{Cl}+0\) & & \\
\hline 22 & - Br 0 & Br 0 & \(=\mathrm{Br}+0\) & & \\
\hline 23 & - BrNO3 & BrNO & \(=\mathrm{Br}+\mathrm{NO} 3(29 \%)\) & \& \(\mathrm{BrO} 0+\mathrm{NO2}(71 \%)^{*}\) & \\
\hline 24 & - HOBr & HOBr & \(=\mathrm{OH}+\mathrm{Br}\) & & \\
\hline 25 & - BrCl & BrCl & \(=\mathrm{Br}+\mathrm{Cl}\) & & \\
\hline 26 & - N20 & N2 0 & \(=\mathrm{N} 2+0\) & & \\
\hline 27 & - CFCl 3 & CFCl 3 & \(=\). & & \\
\hline 28 & - CF2Cl 2 & CF2Cl 2 & \(=\) & & \\
\hline 29 & - F113 & CF2Cl C & \(\mathrm{Cl} 2=\). & & \\
\hline 30 & - F114 & CF2Cl CF & \(2 \mathrm{Cl}=.\). & & \\
\hline 31 & - F115 & CF3CF 2 & = . . & & \\
\hline 32 & - CCl 4 & CCl 4 & \(=\) & & \\
\hline 33 & - CH 3 Cl & \(\mathrm{CH3Cl}^{\text {a }}\) & \(=\mathrm{CH} 3+\mathrm{Cl}\) & & \\
\hline 34 & - MeCCL 3 & CH3CCl & = . . & & \\
\hline 35 & - CH 2 Cl 2 & \(\mathrm{CH2Cl}_{2}\) & =. . & & \\
\hline 36 & - CHF 2 Cl & CHF2Cl & =... & & \\
\hline 37 & - F123 & CF3CHCl & \(2=.\). & & \\
\hline 38 & -F141b & \(\mathrm{CH3CFCl}\) & \(2=.\). & & \\
\hline 39 & -F142b & CH3CF 2 & I =... & & \\
\hline 40 & - CH 3 Br & CH3Br & \(=\mathrm{CH} 3+\mathrm{Br}\) & & \\
\hline 41 & - H1211 & CF2Cl Br & = . . & & \\
\hline 42 & - H1301 & CF3Br & = & & \\
\hline 43 & - H2402 & C2F4Br & = & & \\
\hline 44 & - CH 2 Br 2 & CH2Br 2 & = & & \\
\hline 45 & - CHBr 3 & CHBr 3 & \(=\) & & \\
\hline 46 & - \(\mathrm{CH}^{\text {chl }}\) & CH3I & \(=\mathrm{CH} 3+1\) & & \\
\hline 47 & - CF31 & CF31 & \(=\) CF \(3+1\) & & \\
\hline
\end{tabular}
```

```
48 {-OCS OCS =CO+S
50 J-CH3NO3 CH3ONO2=CH3O+NO2
1 J.ActAld CH3CHO =CH3+HCO
-MeACr CH2C(CH3)CHO =CH2=C(CH3)+HCO
54 J.GIyAId HOCH2CHO =HOCH2+HCO
55 J.MEKeto CH3COC2H5 =CH3+C2H5CO( 15%) & C2H5+CH3CO(85%)*
56 J.EAId C2H5CHO = C2H5+HCO
5 7 \text { J.MGI yxI CH3COCHO =CH3CO+HCO}
58 J-GIyxIa (CHO)2=HCO+HCO
59 J-GIyxlb (CHO)2 =H2+CO+CO
61 -Acet.a C3H6O=CH3CO+CH3
62 J.Acet-b C3H6O = CH3+CH3+CO
===============================================================
* In prelimi nary comparisons, we have found it best to compare
the total 03 photolysis rate and the rate leading to O(1D),
skipping the O(3P) path. When branching paths with % are
indicated in the table, they indicate the values derived for
fast.JX, please just report the total J-value.
```

