The efficient long-term inhibition of forsterite dissolution by common soil bacteria and fungi at Earth surface conditions

Eric H. Oelkers a,b,⇑, Liane G. Benning c,d, Stefanie Lutz e, Vasileios Mavromatis a,e, Christopher R. Pearce f, Oliver Plümper g

a Geoscience and Environment Toulouse (GET), CNRS, UMR 5563, Observatoire Midi-Pyrénées, 14 Avenue Edouard Belin, 31400 Toulouse, France
b Earth Sciences, University College London, Gower Street, London WC1E 6DT, United Kingdom
c School of Earth and Environment, The University of Leeds, Leeds LS2 9JT, United Kingdom
d GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, Germany
e Institute of Applied Geosciences, Graz University of Technology, Rechbauerstrasse 12, A-8010 Graz, Austria
f National Oceangraphy Centre, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, United Kingdom
g Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 Utrecht, The Netherlands

Received 5 February 2015; accepted in revised form 7 June 2015; available online 12 June 2015

Abstract

San Carlos forsterite was dissolved in initially pure H2O in a batch reactor in contact with the atmosphere for 5 years. The reactive fluid aqueous pH remained relatively stable at pH 6.7 throughout the experiment. Aqueous Mg concentration maximized after approximately 2 years time at 3 \times 10^{-5} \text{ mol/kg}, whereas aqueous Si concentrations increased continuously with time, reaching 2 \times 10^{-5} \text{ mol/kg} after 5 years. Element release rates closely matched those determined on this same forsterite sample during short-term abiotic open system experiments for the first 10 days, then slowed substantially such that the Mg and Si release rates are approximately an order of magnitude slower than that calculated from the short-term abiotic experiments. Post-experiment analysis reveals that secondary hematite, a substantial biotic community, and minor amorphous silica formed on the dissolving forsterite during the experiment. The biotic community included bacteria, dominated by Rhizobiales (Alphaproteobacteria), and fungi, dominated by Trichocomaceae, that grew in a carbon and nutrient-limited media on the dissolving forsterite. The Mg isotope composition of the reactive fluid was near constant after 2 years but 0.25‰ heavier in \delta^{26}\text{Mg} than the dissolving forsterite. Together these results suggest long-term forsterite dissolution in natural Earth surface systems maybe substantially slower than that estimated from short-term abiotic experiments due to the growth of biotic communities on their surfaces. © 2015 Published by Elsevier Ltd.

1. INTRODUCTION

The goal of this study is to improve our understanding of forsterite reactivity in natural Earth surface systems. Towards this goal, forsteritic olivine was dissolved in initially pure H2O in a batch reactor for 5 years. Although no carbon or nutrients were added to the reactor, a community of microbes developed on the dissolving forsterite...
during the experiment. The temporal evolution of the reactive fluid chemistry and post-experiment analysis of the solid phases, including DNA sequencing, were used to provide insight into microbial-mineral interaction and to assess the degree to which this microbial community affected forsterite reactivity. Magnesium isotopic analyses were performed to determine how microbially mediated forsterite dissolution fractionates this element between the solid and fluid phase. The purpose of this communication is to report the results of this experimental study, providing insight into both the ability to harvest divalent metal cations from forsterite for mineral carbonation, and how microbial communities may affect weathering rates over extended time frames at Earth surface conditions.

The reactivity of forsterite and its silicate alteration products has received increasing attention as a potential source material for the divalent cations required to carbonate CO$_2$ during carbon storage efforts (e.g. Giammar et al., 2005; Oelkers and Schott, 2005; Bearat et al., 2006; Matter et al., 2007; Oelkers et al., 2008; Dufaud et al., 2009; Matter and Kelemen, 2009; Prigiobbie et al., 2009; King et al., 2010; Davai et al., 2011; Guyot et al., 2011; Beinlich et al., 2012; Broecker, 2012; Kohler et al., 2013; Gislason and Oelkers, 2014; Sissmann et al., 2014). This interest has led to a large number of studies aimed at characterizing forsterite dissolution behavior and rates at various fluid compositions and temperatures (Luce et al., 1972; Sanemasa et al., 1972; Grandstaff, 1978, 1986; Murphy and Helgesson, 1987, 1989; Blum and Lasaga, 1988; Banfield et al., 1990; Wogelius and Walther, 1991, 1992; Casey and Westrich, 1992; Awad et al., 2000; Chen and Brantley, 2000; Rosso and Rimstidt, 2000; Pokrovsky and Schott, 2000a,b; Oelkers, 2001b; Giammar et al., 2005; Hänchen et al., 2006; Olsen and Rimstidt, 2008; Davis et al., 2009; Beinlich and Austreheim, 2012; Rimstidt et al., 2012; Olsson et al., 2012; Plümper et al., 2012; Wang and Giammar, 2012; García et al., 2013; Saldi et al., 2013; van Noort et al., 2013; Bundeleva et al., 2014; Declercq et al., 2013; Johnson et al., 2014; King et al., 2011, 2014; Martinez et al., 2014; Torres et al., 2014). A large fraction of these forsterite dissolution experiments were performed at acidic conditions, either due to the presence of aqueous HCl (e.g. Casey and Westrich, 1992; Oelkers, 2001b) or at elevated CO$_2$ pressures (e.g. Saldi et al., 2013; Johnson et al., 2014). More significantly, the bulk of these experiments were performed over short time periods; for example Olsen and Rimstidt (2008) reported forsterite dissolution rates based on experiments performed for a total of only two hours each.

A number of studies, however, suggest that the long-term dissolution behavior of dissolving olivine may be significantly different from its initial short-term behavior. Mg was observed to be preferentially released relative to Si from the forsterite surface during the initial stages of its dissolution at acidic pH (Seyama et al., 1996; Pokrovsky and Schott, 2000a,b; Zakaznova-Herzog et al., 2008; Oelkers et al., 2009; King et al., 2011). This behavior can result in the formation of a Si-enriched surface layer that may polymerize and influence dissolution rates; Davai et al. (2011) reported that forsterite dissolution rates decrease as acidic CO$_2$-rich fluids become saturated with respect to amorphous silica, similar to the behavior previously observed for multi-component mineral and glass dissolution (e.g. Grambow, 1985; Grambow and Muller, 2001; Oelkers, 2001a). Alternatively, the surface topography of the mineral itself can evolve due to dissolution altering its average reactivity (e.g. Bandstra and Brantley, 2008; Lütte et al., 2013). In addition, the dissolving olivine surface can become covered by secondary minerals and/or bacteria (c.f. Giammar et al., 2005; Zakaznova-Herzog et al., 2008; Olsson et al., 2012; Wang and Giammar, 2012; Hövelmann et al., 2012; Shir okova et al., 2012; Saldi et al., 2013). The degree to which secondary surface precipitates affect the dissolution rates of the primary mineral appears to depend on the structural match between the two minerals and the presence of interconnected porous pathways in the secondary phases (Hodson, 2003; Cubillas et al., 2005; Putnis, 2009; Stockmann et al., 2011, 2013; Saldi et al., 2013). Finally, long-term olivine dissolution rates can also be limited by the slow precipitation rates of secondary minerals, which could lead the fluid to approach equilibrium with the dissolving mineral (e.g. Zhu and Lu, 2009; Zhu et al., 2010; Saldi et al., 2012). This study was motivated in part to assess how these various processes might influence forsterite dissolution rates over timescales larger than those typically considered in laboratory studies.

A number of studies demonstrated that processes such as secondary mineral formation, adsorption and/or uptake by higher plants occurring during weathering may alter the Mg isotopic composition of residual fluids (e.g. Black et al., 2008; Pogge von Strandmann et al., 2008; Bolou-Bi et al., 2010; Li et al., 2010; Teng et al., 2010; Tipper et al., 2010; Wimpenny et al., 2010; Opfergelt et al., 2012, 2014; Shir okova et al., 2013; Huang et al., 2012; Illina et al., 2013; Movromatis et al., 2012, 2014). Such processes could lead to global riverine fluxes that are isotopically lighter in Mg compared to the homogenous chondritic composition of the Earth’s mantle (Tipper et al., 2006). Conversely, the formation of secondary carbonate minerals is known to preferentially remove isotopically light Mg isotopes from solution, causing the residual liquid to have a heavier composition (Movromatis et al., 2014; Beinlich et al., 2014). Consequently isotopic analysis of the reactive fluids during sampled during our experiments may help to quantify whether Mg isotope fractionation occurs during forsterite dissolution, and what impact this may have on the composition of fluids at the Earth’s surface.

2. MATERIALS AND METHODS

2.1. Batch reactor experiment

This study reports on the result of a single 5-year forsterite dissolution experiment performed in a batch reactor system. The San Carlos forsterite sample used in this study was originally prepared by Pokrovsky and Schott (2000a,b), who reported that its composition is consistent with Mg$_{1.82}$Fe$_{0.18}$SiO$_4$ (Fo$_{91}$). San Carlos Olivine has been reported to contain numerous trace elements including ~40 ppm P (De Hoog et al., 2010). Transparent crystals
0.5 cm in size were handpicked, ground with an agate mortar and pestle, and sieved. The size fraction between 50 and 100 μm was ultrasonically cleaned using alcohol to remove fine particles and dried overnight at 60 °C. X-ray diffraction analysis of this material shows it to be pure forsterite free of clay minerals and secondary phases. The specific surface area of the cleaned powder was 800 ± 20 cm²/g as determined by Kr adsorption using the multi-point B.E.T. method. These solids were stored in a capped plastic bottle until dry then dissolved in concentrated aqueous HNO₃ for the solid. Each sample was evaporated for 7 years prior to being used in this study. Samples were not further cleaned or sterilized prior to use in the experiments.

In an attempt to mimic the behaviour of grains interacting with rainwater at the Earth’s surface, 0.514 g of ground forsterite was placed together with 985 g of pure demineralized H₂O in a 1 litre polypropylene reactor and closed with a non-air tight screw cap and left in a room with ambient light. The reactor was shaken by hand at monthly intervals and a total of 32 fluid samples were collected and through 0.45 μm filters using a polypropylene syringe. A list of sampling times and masses are provided in the electronic supplement. No additional filtering was performed on the sampled fluids before chemical analysis. Shaking and sampling allowed the fluid to have regular contact with the atmosphere. The pH of the reactive fluid samples was measured using a combination glass electrode calibrated on the activity scale with NIST buffers (pH = 4.002, 6.865, and 9.180 at 25 °C). Aqueous magnesium concentrations were determined by flame atomic absorption spectrophotometry using a Perkin Elmer 5100 PC spectrometer equipped with an AS-90 autosampler, with an uncertainty of ±2%. Aqueous silica concentrations were determined using the molybdate blue colorimetric method (Govett, 1961) using a Technicon analyzer with an uncertainty of ±3%. Aqueous Fe concentrations are not reported; these concentrations were generally below the 50 ppb detection limit of the furnace atomic absorption spectrometer.

In an attempt to mimic natural processes, no attempt was made to sterilize the reactor, reactive fluid, or the mineral powder prior the experiment. Similarly, toxic salts such as sodium azide (NaN₃) were not added to the reactor to prevent microbe growth. Finally, neither organic compounds nor nutrients were added to the reactor, such that if a microbial community were to grow it would be required to persist on nutrients provided by the dissolving mineral and gases dissolved from the atmosphere.

2.2. Mg isotope measurements

Selected fluid samples were analyzed to determine their Mg isotopic compositions following the method described in Pearce et al. (2012) and Mavromatis et al. (2013, 2014). Typically 5–10 μg of Mg was processed for each fluid sample, and ~10 mg of forsterite was dissolved in concentrated aqueous HCl, for the solid. Each sample was evaporated until dry then dissolved in concentrated aqueous HNO₃ prior to analysis. The samples were then passed through AG50 W-X12 cation exchange resin before being isotonically analysed using a Thermo-Finnigan ‘Neptune’ MC-ICP-MS at the Géosciences Environnement Toulouse laboratory. Fluid concentrations of 300 ppb typically gave beam intensities of ~4V for ²⁴Mg, with total procedural blanks having a negligible contribution of generally <10 mV. Isotopic compositions were determined via sample-standard bracketing, and are reported as δ²⁶/²⁴Mg with respect to the DSM-3 standard (Galy et al., 2003). All samples were analysed in triplicate, with the mean value being presented. The long-term reproducibility of isotopic analyses, assessed by repeat analyses of the DSM-3 Mg standard, gave a δ²⁶/²⁴Mg 2 standard deviation (2σ) of 0.04‰.

2.3. Reacted mineral analysis

The reacted olivine powders were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Secondary electron (SE) imaging and energy-dispersive X-ray (EDX) analysis of powder samples were performed in a FEI Nova 600 NanoLab focused ion beam (FIB)-SEM. To investigate the organic/o-livine interface we applied a protective Pt-coating across areas of interest that were subsequently excavated using focused Ga-ion beam milling. For TEM analysis, reacted powders were either applied via dispersion onto holey-carbon copper discs or electron transparent FIB lamellae were prepared from individual powder grains. TEM samples were characterized in a FEI Tecnai 20F operating at 200 kV, equipped with a high-angle annular dark field (HAADF) detector and an EDX system. All electron microscope analyses were executed at the Electron Microscopy Center at Utrecht University.

Raman spectra of organics covering the powder surfaces were collected using a Horiba Jobin Yvon XploRA confocal Raman spectrometer operating with the 532 nm line of a Nd:YAG laser at the Institut für Mineralogie, University of Münster, Germany. The scattered Raman light was collected in a 180° backscattering geometry and dispersed by a 1200 grooves/mm grating after passing through a 100 μm entrance slit. The spectrometer was calibrated using the first order Raman band of silica at 520.7 cm⁻¹. Observed Raman spectra were compared against the RRUFF project database (Downs, 2006) and Raman databases for microorganisms (Maquelin et al., 2002; Huang et al., 2010, and references therein).

2.4. Microorganism identification

The microorganisms that grew during the long-term forsterite dissolution experiment were identified though characterization of their ribosomal DNA. Such identification was essential in this study as no microbial communities or nutrients were added to the reactor. Total DNA was extracted using a MoBio Laboratories PowerSoil® DNA Isolation kit. 16S rRNA genes were amplified using the bacterial primers 27F (5'-AGAGTTTGATCMTGGCTCAG) and 357R (5'-CTGCTGCCTCYCCGTA), and tagged with the Ion Torrent adapter sequences and MID barcodes, spanning the V1–V2 hypervariable regions. 185 rRNA genes were amplified using the eukaryotic primers 528F (5'-CGGGAATTCAGCTCACA) and 706R (5'-AATC
CRAGAAATTCACCTCT) (Cheung et al., 2010), and tagged with the Ion Torrent adapter sequences and MID barcodes, spanning the V4-V5 hypervariable region. Polymerase chain reaction (PCR) amplifications were performed using a Platinum® PCR SuperMix, High Fidelity, according to the manufacturer’s (Life Technologies) protocols. Initial denaturation at 95 °C for 5 min was followed by 30 cycles of 30 s of denaturation at 95 °C, annealing at 60 °C for 30 s, and elongation at 72 °C for 30 s. Final elongation was done at 72 °C for 7 min. PCR amplifications were carried out in triplicate to reduce amplification bias in reaction volumes of 1 × 25 μl and 2 × 12.5 μl. PCR product quality and size were determined by Agarose gel electrophoreses. The pooled amplicons were cleaned with Agencourt® AMPure XP beads, with a bead to DNA ratio of 0.6 and analysed on the Agilent Technologies Agilent 2100 Bioanalyzer with an Agilent Technologies High Sensitivity DNA kit to determine the quality, size, and concentration. Following these steps the 16S and 18S amplicons were sequenced on an Ion Torrent Personal Genome Machine using the Ion Xpress™ Template Kit and an Ion 314™ chip following manufacturer’s protocols. The Ion Torrent sequencing was performed at the Aberystwyth Institute of Biological, Environmental and Rural Sciences. The v4–v5 region of the 18S rRNA genes were also sequenced a second time commercially using an Illumina MiSeq sequencer at Source BioScience (UK).

The Internal Transcribed Spacer (ITS) regions of the eukaryotic ribosomal DNA (rDNA) were amplified using the primers ITS1 (5′-TCCGTAAGGTGAACCTGCGG) and ITS2 (5′-GCTGCGTTCTTCATCGATGC). These PCR amplifications were performed using a Platinum® PCR SuperMix, High Fidelity, according to the manufacturer’s Life Technologies protocols. Initial denaturation at 95 °C for 5 min was followed by 30 cycles of 30 s of denaturation at 95 °C, annealing at 55 °C for 30 s, and elongation at 72 °C for 60 s. The final elongation was done at 72 °C for 7 min. A library was created from the cleaned PCR product and sequenced on the Illumina MiSeq (2 × 250 bp) at the UK National Health Service Sheffield Diagnostic Genetics Service Centre.

Sequence processing and analyses were carried out in Qime (Caporaso et al., 2010). Barcodes and adapter sequences were removed from each sequence. Filtering of sequences was performed using an average cutoff of Q20 over a 350 bp range. Reads shorter than 200 bp were removed. Operational taxonomic units (OTUs) were picked de novo using a threshold of 97% identity. Taxonomic identities were assigned for representative sequences of each OTU using Greengenes as the reference database (DeSantis et al., 2006) for 16S rRNA sequences and UNITE for ITS sequences (Kõljalg et al., 2013) and aligned using PyNAST and a 0.80 confidence threshold. Singletons were excluded from the analysis.

2.5. Geochemical modeling calculations

The chemical evolution of the long-term forsterite dissolution experiment determined from the geochemical model is illustrated in Fig. 1. Forsterite is calculated to dissolve continuously during the model calculation, provoking the precipitation of hematite almost immediately and talc approximately 2 years (6 × 107 s) after the beginning of the experiment. The modelled concentration of aqueous Mg increases monotonically with time, whereas that of aqueous Si maximizes at the onset of talc precipitation. The aqueous Mg/Si ratio is calculated to be 1.82, corresponding to their stoichiometric release from the forsterite, during the first 6 × 107 s of the experiment; this ratio increases substantially with time after the onset of talc precipitation because the Mg/Si ratio is lower in talc than in the dissolving forsterite. The fluid pH is calculated to increase continuously during the experiment from 5.7, the pH of pure water in equilibrium with atmospheric CO2, to 8.1 after 5 years. Although hematite is calculated to be the first secondary phase to precipitate during the experiment, this phase remains relatively minor due to the low Fe concentration of the dissolving forsterite. Talc is calculated to be the dominant secondary phase after ~2 years of forsterite dissolution. No other phases are calculated to be supersaturated other than quartz, which is mildly supersaturated in the modelled reactive fluid from 5 × 107 to 10 × 107 s of elapsed time.

The observed chemical evolution of the fluid phase during the 5-year forsterite dissolution experiment is illustrated in Fig. 2. These results contrast significantly from those of the model calculation. The aqueous Mg concentration maximizes after approximately 2 years (7 × 107 s) at 3 × 10−5 mol/kg then decreases slowly thereafter. Aqueous Si concentrations increase continuously with time reaching 2 × 10−5 mol/kg after approximately 5 years (1.6 × 108 s). Consequently, the aqueous Mg/Si ratio decreases significantly with time during the final 3 years of the experiment. The reactive fluid pH decreases slowly with time from approximately 6.8 to 6.5, although it was not possible to measure the pH accurately in the fluid samples collected during
the first 3×10^6 s of the experiment due to the low ionic strength of the fluid samples – pH measurements did not stabilize due to the low buffering capacity of these samples. These reactive fluid compositions are shown in an aqueous activity diagram in Fig. 3. It can be seen in this figure that the fluids are undersaturated with respect to all potentially forming secondary minerals in the MgO–SiO$_2$–H$_2$O–CO$_2$ system; note that talc is the most stable hydrous Mg–silicate mineral in the adopted thermodynamic database.

SEM images of the solids recovered at the end of the experiment are shown in Fig. 4. Etch pits are pervasive on the reacted forsterite surface. Many have a linearly elongated morphology (c.f. Fig 4a). These etch pits appear to be the preferred sites for an elongated growths (Fig. 4b). These growths formed along and outward from the reacted forsterite surface, forming a web-like structure on the surfaces of nearly every reacted forsterite grain (Fig 4c and d). An iron oxide phase, as identified by SEM- and TEM-EDX analysis, is present in minor amounts on some of the reacted forsterite grains (Fig 4e). Some minor amorphous Si was found to be present in isolated locations (Fig 4f).

The nature of the web-like growth on the reacted forsterite was further investigated by FIB-SEM
cross-sectioning and TEM analysis (not shown). The location of a representative cross-sectional cut traversing this growth is shown in Fig. 5a. An SEM image of the FIB-SEM cross-section, provided in Fig. 5b, shows it to be growing directly on the dissolving olivine. SEM-EDX analysis of this growth shows it to consist mainly of carbon and oxygen with minor P, S, Na, and Cl. Raman spectroscopy identifies the web-like growth to contain a combination of organic molecules typically affiliated with microbial life (e.g., Huang et al., 2010) as identified in Fig. 5c.

The identity of the organic growth on the dissolving olivine was determined by ribosomal DNA sequencing. In terms of the bacterial community, a total of 1526 sequences passed the Qiime quality pipeline corresponding to 208 operational taxonomic units, clustered at 97% sequence identity. *Proteobacteria* was found to be the most abundant phylum (90%) with *Alphaproteobacteria* (90%) being the dominant class and *Rhizobiales* (86.7%) the dominant order. *Cytophagia* was the second most abundant phylum (7.4%). Within the *Rhizobiales*, *Phyllobacteriaceae* (26.5%) and *Bradyrhizobiaceae* (13.6%) were the dominant families. A summary of the identified bacterial community is provided in Table 1.

In terms of the fungal community, PCR amplification with the 18S rRNA primers, although attempted two separate times, through two different approaches, and in two different laboratories, produced only a faint DNA band of the correct size on the Agarose gel. Unfortunately after PCR amplification, the optimisation and additional clean-ups (due to adapter dimers) needed for the 18S work, resulted in too little PCR product for sequencing. However, PCR amplification with the ITS primers and Illumina MiSeq sequencing resulted in 13,000 sequences, of which only 50 could be assigned using the UNITE database. Most sequences had likely lost their phylogenetic signal since the Illumina MiSeq library had to be prepared from the PCR product of the full ITS region and unassigned sequences had to be filtered out. The remaining sequences were all assigned to the same fungal species *Emericella nidulans*, which belongs to the family of the *Trichocomaceae*. *Trichocomaceae* are saprobe fungi, known to be adaptable to extreme environmental conditions, ubiquitous in soil, common associates of decaying plants, and play an important role in aggregation of soil (Daynes et al., 2012). Although relatively few of the fungi sequences could be identified, the likelihood that most of the fungal community is comprised of *Trichocomaceae* is supported by the similarity in morphology between the images shown in Fig. 4 with those of this fungi reported in the literature (e.g. Daynes et al., 2012).

The Mg isotopic evolution of the fluid phase during the long-term forsterite dissolution experiment is presented in Fig. 6. The $^{26/24}$Mg isotope composition of the first measured reactive fluid samples are light is compared to that of the dissolving forsterite. However, the Mg isotope compositions of the subsequent reactive fluid samples are relatively constant and are \sim0.25‰ heavier than the dissolving forsterite.

4. DISCUSSION

4.1. The long-term dissolution behavior of forsterite at Earth surface conditions

Measured reactive fluid Si concentrations collected during the first 4 months of the long-term forsterite dissolution experiment are compared with corresponding model calculations based on forsterite dissolution rates generated from the short-term abiotic experiments of Pokrovsky and Schott (2000b) in Fig. 7. Note again that the rates of Pokrovsky and Schott (2000b) were chosen for this comparison because they were generated using the same ground mineral powder and the same laboratory as the long-term experiment described in this study, and in the absence of added microbes. As such they serve as an abiotic control for comparison in the present study. The close correspondence between modelled and measured Si concentrations during the first 10 days of the experiment demonstrates that the initial forsterite dissolution rates are consistent with those used in the model calculations. After approximately 10 days, the measured and modelled Si concentrations diverge suggesting a slowing of forsterite dissolution rates during our long-term experiments, such that Si and Mg release rates are approximately an order of magnitude lower than that calculated using the abiotic rates, based on a comparison between the slopes of the calculated curve and measured Si concentrations shown in Fig. 7 and similar plots made for Mg. We postulate that this inhibition of forsterite dissolution is due to the formation and growth of the bacterial and fungal community identified on the dissolving forsterite at the end of the experiment. This possibility is supported by the results of Garcia et al. (2013) who reported that *Escherichia Coli*, a common freshwater *Proteobacterium*, slowed the dissolution of forsterite compared to abiotic control experiments by a factor of \sim2 to 3 during 7 day-long experiments.
The observed slowing of element release from forsterite may be representative of Earth surface weathering environments for a number of reasons. First, this batch reactor study was performed in initially pure water open to the atmosphere, rather than an aqueous buffer solution. The pH of the fluid phase in this study appears to be fixed by the combined CO$_2$ input from the atmosphere, microbial metabolism, and proton consumption from forsterite dissolution. Second, the microbial community that developed in the reactor was not amended with artificial nutrients or a carbon source, thus nutrients could only be derived from the trace element content of the dissolving forsterite. Third, the microbial community that grew in the reactor was not a selected specific strain, but rather a suite of microbes common to natural Earth surface systems. The bacterial community was dominated by *Proteobacteria*, a common soil bacterium; this is, for example, the most abundant phylum in Oklahoma tall-grass prairie soil, where the most abundant class was the *Alphaproteobacteria* (Spain et al., 2009). Similarly, *Alphaproteobacteria* is reported as being predominant in the non-rhizosphere soils of the Western Ghats (Rohini-Kumar et al., 2012), and among the three most abundant bacterial groups found in four soils across a large transect of the western hemisphere (Roesch et al., 2007). Similarly, the fungal community in our reactor was dominated by *Trichocomaceae*, a typical fungal species that dominates numerous soil environments (Fraga et al., 2010; Daynes et al., 2012).
A significant observation made in this study is that the microbial community grew preferentially on the active sites on the dissolving mineral surface. This is exemplified in Fig. 4a and b, where growing microbes can be seen to be present in most, if not all, of the etch pits formed on the dissolving forsterite surfaces. By preferentially colonizing actively dissolving sites, the microbes may be able to alter mineral reactivity to a far greater degree than their surface coverage might suggest. A number of studies have previously postulated that microbes preferentially attach themselves to active sites on dissolving mineral surfaces to harvest essential nutrients from the minerals (Hutchens et al., 2006; Bonneville et al., 2009, 2011; Ballard et al., 2010). Note that the dissolving San Carlos forsterite contains a large number of the elements required for microbial growth in trace quantities (De Hoog et al., 2010).

It should be noted, however, that the concentrations of Si and Mg in the reactive fluid may underestimate the total amount of these elements released from the dissolving forsterite in our experiment. For example, the fact that the fluid phase Mg/Si ratio appears to decrease with time may be explained by the removal of Mg from the fluid. Considering the relatively small quantity of Fe precipitated during the experiment, it is likely that the main sink of this Mg released from the forsterite is its incorporation into the growing biota; Mg is the most common divalent metal in living cells, having concentrations of 400–1000 mM in freshwater and marine bacteria (Fagerbakke et al., 1999; Heldal et al., 2012).

More perplexing, perhaps is the presence of minor amorphous Si at the dissolving forsterite surface at the end of the experiments, as the fluids are strongly undersaturated with respect to this phase throughout the experiment. It has nevertheless been suggested that fluids can become supersaturated locally if they are isolated from the bulk fluid leading to mineral replacement reactions (e.g. Putnis, 2009; Ruiz-Agudo et al., 2012; Bray et al., 2014, 2015).

High-resolution SEM images show that the microbial community grows directly on the surface of the dissolving forsterite (see Fig. 4c and d). As amorphous Si dissolves far slower than forsterite (c.f. Marini, 2006; Schott et al., 2009) any amorphous Si precipitated at the microbial/forsterite interface would persist for substantial time after it was again exposed to the reactive fluid.

4.2. Implications for carbon storage

The dissolution of olivine is commonly thought to be one of the most efficient methods to obtain the divalent metal cations required for the long-term storage of CO₂ through mineral carbonation reactions (e.g. Giammar et al., 2005; Oelkers et al., 2008; Prigioibbe et al., 2009; King et al., 2010; Daval et al., 2011; Guyot et al., 2011; Gudbrandsson et al., 2011; Saldi et al., 2013). The overall rate of olivine carbonation stems from the coupling of forsterite dissolution rates with Mg-carbonate precipitation rates. Several processes can slow the dissolution rates of olivine thereby slowing the carbonation process. At elevated CO₂ pressure, such as might be encountered as part of subsurface mineral carbonation efforts, aqueous fluids will be acidic. At such conditions the formation of Si-rich protective layers may slow Mg release from olivine (e.g. Bearat et al., 2006; Daval et al., 2011; Saldi et al., 2013).
alternative to subsurface mineral carbonation is to promote olivine carbonation at the Earth’s surface by distributing ground olivine onto the surfaces of farm and pasture land (Schuiling and Krijgsman, 2006; Kohler et al., 2010; Moosdorf et al., 2014), the continental coasts (Hangx and Spiers, 2009), and/or directly in the oceans (Kohler et al., 2013). At Earth surface conditions, pH is near to neutral, and the formation of Si-rich-layers at the surface of olivine is less favored (Oelkers et al., 2009). Nevertheless, the results presented in this study suggests that microbial communities may preferentially colonize the active sites on dissolving olivine surfaces, possibly to acquire the limiting nutrients they need for growth. This process can, over time, slow the release of Mg from olivine slowing substantially geo-engineered Earth surface carbon capture/storage efforts. As such, carbon drawdown from the atmosphere by the dissolution of ground olivine on the Earth’s surface may be far less efficient than that predicted using dissolution rates generated from short-term abiotic olivine dissolution experiments.

4.3. Implications for surface water Mg isotope compositions

Our experimental results indicate that forsterite dissolution at ambient temperatures and neutral pH in the presence of a natural community of bacteria and fungi results in the preferential release of isotopically heavy Mg. Although it was not possible to extract a pure biotic fraction and measure directly its Mg isotopic composition, it seems likely this observed fluid enrichment in heavy Mg results from the preferential uptake of light Mg by the biotic community. This possibility is supported by the observation that (1) the non-stoichiometric dissolution of forsterite observed in this study requires a Mg sink, and that (2) the microbial community is the only observed potential secondary reservoir for this Mg. Note also that 26Mg enrichment was previously observed in cyanobacteria cultures of

Table 1

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Percentage</th>
<th>Recovered from forsterite collected at the end of the 5-year dissolution experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidobacteria; Acidobacteria; Acidobacteriales; Acidobacteriaceae</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Actinobacteria; Actinobacteria; Actinomycetales; Microbacteriaceae</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Actinobacteria; Actinobacteria; Actinomycetales; Pseudonocardiales; Pseudonocardia</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Bacteroidetes; Cytophagia; Cytophagales; Cytophagaceae; Spirospora</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>Proteobacteria; Alphaproteobacteria; Rhizobiales</td>
<td>46.3</td>
<td></td>
</tr>
<tr>
<td>Proteobacteria; Alphaproteobacteria; Rhizobiales; Bradyrhizobiaceae</td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td>Proteobacteria; Alphaproteobacteria; Rhizobiales; Bradyrhizobiaceae; Bradyrhizobium</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Proteobacteria; Alphaproteobacteria; Rhizobiales; Methylbacteriaceae; Methylbacterium</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Proteobacteria; Alphaproteobacteria; Rhizobiales; Phyllobacteriaceae</td>
<td>18.5</td>
<td></td>
</tr>
<tr>
<td>Proteobacteria; Alphaproteobacteria; Rhizobiales; Phyllobacteriaceae; Mesorhizobium</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>Proteobacteria; Alphaproteobacteria; Rhodospirillales; Rhodospirillaceae</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Proteobacteria; Alphaproteobacteria; Sphingomonadales; Sphingomonadaceae</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Proteobacteria; Alphaproteobacteria; Sphingomonadales; Sphingomonadaceae; Sphingomonas</td>
<td>2.6</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6. Temporal evolution of the reactive fluid Mg concentration and isotope composition (reported as $\delta^{26/24}$Mg relative to the DSM3 standard). The filled circles designate measured fluid $\delta^{26/24}$Mg compositions, and the corresponding error bars indicate the uncertainty (2 s.d.) of the measurement. The grey bar designates the Mg isotope composition of the dissolving forsterite. The filled squares indicate the fluid Mg concentration, as also shown in Fig. 2.

Fig. 7. Comparison of measured reactive fluid compositions with those calculated using PHREEQC together with dissolution rates reported by Pokrovsky and Schott (2000b) generated from short-term experiments performed using the same forsterite powder as in the present study (see caption of Fig. 1 for details of this model calculation). The symbols represent reactive fluid compositions measured in this study whereas the curve corresponds to model calculation results.
The observation that forsterite dissolution in the presence of microbes yields a fluid that is isotopically heavy appears to contradict the occurrence of isotopically light Mg in most Earth surface fluids; the $\delta^{26/24}$Mg composition of bulk silicate Earth is $-0.23\%_{oo}$, whereas the average continental runoff is $-1.09\%_{oo}$ and that of modern seawater is $-0.82\%_{oo}$ (Young and Galy, 2004; Tipper et al., 2006; Teng et al., 2007; Bourdon et al., 2010; Ling et al., 2011). We note that the 0.25$\%_{oo}$ fractionation observed in this experiment is small relative to the $\sim 1.2\%_{oo}$ range observed in global rivers (e.g. Tipper et al., 2006). Furthermore, the $\delta^{26/24}$Mg composition of surface waters is known to be heavily influenced by carbonate reactions; Beinlich et al. (2014) previously demonstrated that the carbonation of forsterite olivine results in the precipitation of isotopically light Mg-carbonate minerals. Consequently the dissolution and release of isotopically light Mg from these secondary carbonates may play a more significant role in determining the $\delta^{26/24}$Mg composition of surface waters than direct Mg contribution from silicate dissolution.

5. CONCLUSIONS

The results of the 5-year forsterite dissolution experiment described above suggest that dissolution rates of Mg–silicate minerals in low temperature Earth surface environments may be substantially slowed by the growth of natural microbial communities that preferentially grow at reactive sites on their surfaces. The growth of these communities, which are generally overlooked in short-term laboratory experiments have a number of implications for chemical weathering. Earth surface carbon capture and storage efforts, and the Mg isotopic composition of Earth surface waters. Notably, the slowing of Mg release rates suggests that the weathering of ultramafic rocks and the drawdown of CO$_2$ by the distribution of fine-grained olivine on the Earth’s surface may be far slower than that estimated from the results of short-term abiotic laboratory experiments. The growth of the observed microbial community resulted in isotopically heavy fluid Mg isotope compositions illustrating how this process can influence natural water compositions. Taken together, these results suggest that low-temperature fluid-mineral experiments may provide a clearer representation of natural processes if they were run over longer time frames and in non-sterile conditions.

ACKNOWLEDGEMENTS

We would like to thank several colleagues for their help, in particular Carole Causerand, Alain Castillo, and Philippe de Parseval for technical assistance, and Oleg Pokrovsky, Jacques Schott, Sigurdur Gislasón, and Andrew Putnis for insightful discussions and moral support. We would also like to thank Arwyn Edwards from the Institute of Biological, Environmental & Rural Sciences (IBERS) at Aberystwyth University for his help with the Ion Torrent sequencing and the University of Leeds for financial support for the various Illumina sequencing. This study was funded in part through CarbFix (Collaborative project-FP7-ENERGY-2011-1-283148), DELTA-MIN (Mechanisms of Mineral Replacement Reactions; EC Grant PITN-GA-2008-215360), a University of Leeds PhD grant to Stefanie Lutz, a UK Natural Environment Research Council grant (NE/C004566/1) to Liane G. Benning, and a Veni grant (863.13.006) awarded by the Netherlands Organisation for Scientific Research (NWO) to Oliver Pflümper.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.gca.2015.06.004.

REFERENCES

Gloeocapsa sp. and Synechococcus sp. (Mavromatis et al., 2012; Shirokova et al., 2013).
batch-reaction, one-dimensional transport, and inverse geo-
chemical calculations. Washington, DC: U.S. Geological
Isotopic fractionation during congruent dissolution, precipita-
tion and at equilibrium. Evidence from Mg isotopes. Geochem.
interface-scale mechanism of reaction-induced fracturing dur-
ing serpentinization. Geology 40, 1103–1106.
Pogge von Strandmann P. A. E., Burton K. W., James R. H., van
influence of weathering processes on riverine magnesium iso-
Pokrovsky O. S. and Schott J. (2000a) Forsterite surface com-
position in aqueous solutions: a combined potentiometric, elec-
Acta 64, 3299–3312.
Pokrovsky O. S. and Schott J. (2000b) Kinetics and mechanism of
forsterite dissolution at 25 °C and pH from 1 to 12. Geochem.
Prigioilbe V., Costa G., Baciocchi R., Hänchen M. and Mazzotti
Geochem. 70, 87–124.
Roesch L. F. W., Fulthorpe R. R., Riva A., Casella G., Hadwin K.
M., Kent A. D., Daroub S. H., Camargo F. A. O., Fairer-
erates and contrasts soil microbial diversity. ISME J. 1, 283–290.
Rohini-Kumar M., Osborne J. W. and Saravanavan V. S. (2012)
Comparison of soil bacterial communities of Pinus patula
Nigirises. Western Ghats with other biogeographical distinct
Rosso J. J. and Rimstidt J. D. (2000) A high resolution study of
811.
Ruiz-Agudo E., Putnis C. V., Rodriguez-Navarro C. and Putnis A.
(2012) Mechanism of leached layer formation during chemical
weathering of silicate minerals. Geology 40, 947–950.
Saldi G. D., Schott J., Pokrovsky O. S., Gautier Q. and Oelkers E.
rates at neutral to alkaline conditions and 100–200 °C as
a function of pH, aqueous solution composition and chemical
role of Fe and redox conditions in olivine carbonation rates:
an experimental study of the rate limiting reactions at 90 and
118, 157–183.
Sanemasa I., Yoshida L. and Ozawa T. (1972) The dissolution of
Jpn. 45, 1741–1746.
between mineral dissolution/precipitation kinetics and solution
effective and cheap tool to sequester CO2. Clim. Change 74,
349–354.
Seyama H., Soma M. and Tanaka A. (1996) Surface characteri-
ization of acid-leached olivines by X-ray photoelectron spec-
Shirokova L. S., Benezeth P., Pokrovsky O. S., Gerard E., Menez
B. and Alfredsson H. (2012) Effect of the heterotrophic bac-
terium Pseudomonas reactans on olivine dissolution and
Acta 80, 30–50.
Shirokova L. S., Mavromatis V., Bundeleva I. A., Pokrovsky O.
Using Mg isotopes to trace cyano-bacterially mediated magne-
19, 1–24.
Sissmann O., Brunet F., Martinez I., Guyot F., Verlaguet A.,
Pinquier Y. and Deval D. (2014) Enhanced olivine carbonation
within a basalt as compared to single-phase experiments:
Reevaluating the potential of CO2 mineral sequestration.
Abundance, composition, diversity and novelty of soil
Stockmann G. J., Wolff-Boenisch D., Gislasón S. R. and Oelkers E.
H. (2011) Do carbonate precipitates affect dissolution kinetics?
Stockmann G. J., Wolff-Boenisch D., Gislasón S. R. and Oelkers E.
H. (2013) Do carbonate precipitates affect dissolution kinetics?
magnesium isotope fractionation during basalt differentiation.
Implications for a chorditic composition of the terrestrial
Contrasting lithium and magnesium isotope fractionation
during continental weathering. Earth Planet. Sci. Lett. 300,
63–71.
Tippier E. T., Galy A., Gaillardet J., Bickle M. J., Elderfield H. and
modern ocean: constraints from riverine magnesium isotope
Tippier E. T., Gaillardet J., Louvat P., Capmas F. and White A.
F. (2010) Mg isotope constraints on soil pore-fluid chemistry:
evidence from Santa Cruz, California. Geochim. Cosmochim.
Acta 74, 3883–3896.
acceleration of olivine dissolution via siderophore production.
(2013) Peridote dissolution and carbonation rates at fracture
surfaces under conditions relevant for in-situ mineralization of
water at elevated temperature and high CO2 pressure. Environ.
Wimpenny J., Gislasön S. R., James R. H., Gantoun A., Pogge
beaviour of Li and Mg isotopes during primary phase
dissolution and secondary mineral formation in basalt.
kinetics at the near-surface conditions. Chem. Geol. 97, 101–
112.
Young E. D. and Galy A. (2004) The isotope geochemistry and
cosmochemistry of magnesium. Geochemistry of Non-
Zakaznova-Herzog V. P., Nesbitt H. W., Bancroft G. M. and Tse
J. S. (2008) Characterization of leached layers on olivine and

Associate editor: Chen Zhu